From 7301275a2d0839169aa8d7b1791aae09c0b25749 Mon Sep 17 00:00:00 2001 From: wangyz1997 Date: Tue, 28 Jan 2025 00:25:36 +0800 Subject: [PATCH] stm32f103_lcds_st75256: add spi sdcard driver and badapple player --- stm32f103_lcds_st75256/.mxproject | 4 +- stm32f103_lcds_st75256/Core/Inc/app_main.h | 8 + .../Core/Inc/bsp_lcd_st75256.h | 2 + stm32f103_lcds_st75256/Core/Inc/bsp_sd_spi.h | 43 + stm32f103_lcds_st75256/Core/Inc/diskio.h | 77 + stm32f103_lcds_st75256/Core/Inc/ff.h | 429 + stm32f103_lcds_st75256/Core/Inc/ffconf.h | 296 + stm32f103_lcds_st75256/Core/Inc/main.h | 14 + .../Core/Inc/stm32f1xx_hal_conf.h | 2 +- .../Core/Inc/stm32f1xx_it.h | 4 + stm32f103_lcds_st75256/Core/Src/app_main.c | 194 + .../Core/Src/bsp_lcd_st75256.c | 13 +- stm32f103_lcds_st75256/Core/Src/bsp_sd_spi.c | 455 + stm32f103_lcds_st75256/Core/Src/diskio.c | 128 + stm32f103_lcds_st75256/Core/Src/ff.c | 7084 +++++++++++++++ stm32f103_lcds_st75256/Core/Src/main.c | 665 +- .../Core/Src/stm32f1xx_hal_msp.c | 143 + .../Core/Src/stm32f1xx_it.c | 60 + .../Inc/stm32f1xx_hal_tim.h | 2153 +++++ .../Inc/stm32f1xx_hal_tim_ex.h | 261 + .../Inc/stm32f1xx_ll_tim.h | 3901 +++++++++ .../Src/stm32f1xx_hal_tim.c | 7629 +++++++++++++++++ .../Src/stm32f1xx_hal_tim_ex.c | 2359 +++++ .../stm32f103_lcds_st75256.ioc | 105 +- 24 files changed, 25476 insertions(+), 553 deletions(-) create mode 100644 stm32f103_lcds_st75256/Core/Inc/app_main.h create mode 100644 stm32f103_lcds_st75256/Core/Inc/bsp_sd_spi.h create mode 100644 stm32f103_lcds_st75256/Core/Inc/diskio.h create mode 100644 stm32f103_lcds_st75256/Core/Inc/ff.h create mode 100644 stm32f103_lcds_st75256/Core/Inc/ffconf.h create mode 100644 stm32f103_lcds_st75256/Core/Src/app_main.c create mode 100644 stm32f103_lcds_st75256/Core/Src/bsp_sd_spi.c create mode 100644 stm32f103_lcds_st75256/Core/Src/diskio.c create mode 100644 stm32f103_lcds_st75256/Core/Src/ff.c create mode 100644 stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h create mode 100644 stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h create mode 100644 stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_tim.h create mode 100644 stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c create mode 100644 stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c diff --git a/stm32f103_lcds_st75256/.mxproject b/stm32f103_lcds_st75256/.mxproject index d1e6abd..68b675d 100644 --- a/stm32f103_lcds_st75256/.mxproject +++ b/stm32f103_lcds_st75256/.mxproject @@ -1,8 +1,8 @@ [PreviousLibFiles] -LibFiles=Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\Legacy\stm32_hal_legacy.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_def.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_bus.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_system.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_utils.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio_ex.h;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_exti.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_exti.h;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_spi.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_dma.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_cortex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_pwr.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_exti.c;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\Legacy\stm32_hal_legacy.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_def.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_bus.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_system.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_utils.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio_ex.h;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_exti.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_exti.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\stm32f103xb.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\stm32f1xx.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\system_stm32f1xx.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\system_stm32f1xx.h;Drivers\CMSIS\Device\ST\STM32F1xx\Source\Templates\system_stm32f1xx.c;Drivers\CMSIS\Include\cmsis_armcc.h;Drivers\CMSIS\Include\cmsis_armclang.h;Drivers\CMSIS\Include\cmsis_compiler.h;Drivers\CMSIS\Include\cmsis_gcc.h;Drivers\CMSIS\Include\cmsis_iccarm.h;Drivers\CMSIS\Include\cmsis_version.h;Drivers\CMSIS\Include\core_armv8mbl.h;Drivers\CMSIS\Include\core_armv8mml.h;Drivers\CMSIS\Include\core_cm0.h;Drivers\CMSIS\Include\core_cm0plus.h;Drivers\CMSIS\Include\core_cm1.h;Drivers\CMSIS\Include\core_cm23.h;Drivers\CMSIS\Include\core_cm3.h;Drivers\CMSIS\Include\core_cm33.h;Drivers\CMSIS\Include\core_cm4.h;Drivers\CMSIS\Include\core_cm7.h;Drivers\CMSIS\Include\core_sc000.h;Drivers\CMSIS\Include\core_sc300.h;Drivers\CMSIS\Include\mpu_armv7.h;Drivers\CMSIS\Include\mpu_armv8.h;Drivers\CMSIS\Include\tz_context.h; +LibFiles=Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\Legacy\stm32_hal_legacy.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_def.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_bus.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_system.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_utils.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio_ex.h;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_exti.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_exti.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_tim.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_tim.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_tim_ex.h;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_spi.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_dma.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_cortex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_pwr.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_exti.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_tim.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_tim_ex.c;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_spi.h;Drivers\STM32F1xx_HAL_Driver\Inc\Legacy\stm32_hal_legacy.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_def.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_rcc_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_bus.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_rcc.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_system.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_utils.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_gpio_ex.h;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_gpio.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_dma.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_cortex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_pwr.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_flash_ex.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_exti.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_exti.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_tim.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_ll_tim.h;Drivers\STM32F1xx_HAL_Driver\Inc\stm32f1xx_hal_tim_ex.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\stm32f103xb.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\stm32f1xx.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\system_stm32f1xx.h;Drivers\CMSIS\Device\ST\STM32F1xx\Include\system_stm32f1xx.h;Drivers\CMSIS\Device\ST\STM32F1xx\Source\Templates\system_stm32f1xx.c;Drivers\CMSIS\Include\cmsis_armcc.h;Drivers\CMSIS\Include\cmsis_armclang.h;Drivers\CMSIS\Include\cmsis_compiler.h;Drivers\CMSIS\Include\cmsis_gcc.h;Drivers\CMSIS\Include\cmsis_iccarm.h;Drivers\CMSIS\Include\cmsis_version.h;Drivers\CMSIS\Include\core_armv8mbl.h;Drivers\CMSIS\Include\core_armv8mml.h;Drivers\CMSIS\Include\core_cm0.h;Drivers\CMSIS\Include\core_cm0plus.h;Drivers\CMSIS\Include\core_cm1.h;Drivers\CMSIS\Include\core_cm23.h;Drivers\CMSIS\Include\core_cm3.h;Drivers\CMSIS\Include\core_cm33.h;Drivers\CMSIS\Include\core_cm4.h;Drivers\CMSIS\Include\core_cm7.h;Drivers\CMSIS\Include\core_sc000.h;Drivers\CMSIS\Include\core_sc300.h;Drivers\CMSIS\Include\mpu_armv7.h;Drivers\CMSIS\Include\mpu_armv8.h;Drivers\CMSIS\Include\tz_context.h; [PreviousUsedCubeIDEFiles] -SourceFiles=Core\Src\main.c;Core\Src\stm32f1xx_it.c;Core\Src\stm32f1xx_hal_msp.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_spi.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_dma.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_cortex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_pwr.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_exti.c;Drivers\CMSIS\Device\ST\STM32F1xx\Source\Templates\system_stm32f1xx.c;Core\Src\system_stm32f1xx.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_spi.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_dma.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_cortex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_pwr.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_exti.c;Drivers\CMSIS\Device\ST\STM32F1xx\Source\Templates\system_stm32f1xx.c;Core\Src\system_stm32f1xx.c;;; +SourceFiles=Core\Src\main.c;Core\Src\stm32f1xx_it.c;Core\Src\stm32f1xx_hal_msp.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_spi.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_dma.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_cortex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_pwr.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_exti.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_tim.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_tim_ex.c;Drivers\CMSIS\Device\ST\STM32F1xx\Source\Templates\system_stm32f1xx.c;Core\Src\system_stm32f1xx.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_spi.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_rcc_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_gpio.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_dma.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_cortex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_pwr.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_flash_ex.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_exti.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_tim.c;Drivers\STM32F1xx_HAL_Driver\Src\stm32f1xx_hal_tim_ex.c;Drivers\CMSIS\Device\ST\STM32F1xx\Source\Templates\system_stm32f1xx.c;Core\Src\system_stm32f1xx.c;;; HeaderPath=Drivers\STM32F1xx_HAL_Driver\Inc;Drivers\STM32F1xx_HAL_Driver\Inc\Legacy;Drivers\CMSIS\Device\ST\STM32F1xx\Include;Drivers\CMSIS\Include;Core\Inc; CDefines=USE_HAL_DRIVER;STM32F103xB;USE_HAL_DRIVER;USE_HAL_DRIVER; diff --git a/stm32f103_lcds_st75256/Core/Inc/app_main.h b/stm32f103_lcds_st75256/Core/Inc/app_main.h new file mode 100644 index 0000000..5c96c64 --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Inc/app_main.h @@ -0,0 +1,8 @@ +#ifndef __APP_MAIN_H +#define __APP_MAIN_H + +#include "main.h" + +void app_main(void); + +#endif diff --git a/stm32f103_lcds_st75256/Core/Inc/bsp_lcd_st75256.h b/stm32f103_lcds_st75256/Core/Inc/bsp_lcd_st75256.h index c9d3e11..de35e43 100644 --- a/stm32f103_lcds_st75256/Core/Inc/bsp_lcd_st75256.h +++ b/stm32f103_lcds_st75256/Core/Inc/bsp_lcd_st75256.h @@ -23,4 +23,6 @@ void bsp_lcd_show_6_8_string(uint8_t y, uint8_t x, const char *string); void bsp_lcd_show_8_16_string(uint8_t y, uint8_t x, const char *string); #endif +void bsp_lcd_dma_done_callback(void); + #endif diff --git a/stm32f103_lcds_st75256/Core/Inc/bsp_sd_spi.h b/stm32f103_lcds_st75256/Core/Inc/bsp_sd_spi.h new file mode 100644 index 0000000..bf443f3 --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Inc/bsp_sd_spi.h @@ -0,0 +1,43 @@ +#ifndef __BSP_SD_SPI_H +#define __BSP_SD_SPI_H + +#include "main.h" + +#define BSP_SD_BLOCK_SIZE 512 + +typedef enum { + bsp_sd_type_unknown = 0, + bsp_sd_type_mmc, + bsp_sd_type_sdv1, + bsp_sd_type_sdv2, + bsp_sd_type_sdv2hc, +} bsp_sd_type_t; + +typedef enum { + bsp_sd_error_none = 0, + bsp_sd_error_no_card, + bsp_sd_error_invalid_parameter, + bsp_sd_error_unknown_card_type, + bsp_sd_error_not_ready, + bsp_sd_error_invalid_response, + bsp_sd_error_timeout, +} bsp_sd_error_t; + +typedef struct { + bsp_sd_type_t card_type; + uint32_t sector_count; +} bsp_card_info_t; + +bsp_sd_error_t bsp_sd_init(void); + +bsp_sd_error_t bsp_sd_read_block(uint8_t* buffer, uint32_t sector_address); +bsp_sd_error_t bsp_sd_read_multi_blocks(uint8_t* buffer, uint32_t sector_address, uint16_t sector_count); +bsp_sd_error_t bsp_sd_write_block(const uint8_t *buffer, uint32_t sector_address); +bsp_sd_error_t bsp_sd_write_multi_blocks(const uint8_t *buffer, uint32_t sector_address, uint16_t sector_count); + +void bsp_sd_spi_get_card_info(bsp_card_info_t *card_info_out); + +void bsp_sd_dma_tx_done_callback(void); +void bsp_sd_dma_rx_done_callback(void); + +#endif diff --git a/stm32f103_lcds_st75256/Core/Inc/diskio.h b/stm32f103_lcds_st75256/Core/Inc/diskio.h new file mode 100644 index 0000000..e4ead78 --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Inc/diskio.h @@ -0,0 +1,77 @@ +/*-----------------------------------------------------------------------/ +/ Low level disk interface modlue include file (C)ChaN, 2019 / +/-----------------------------------------------------------------------*/ + +#ifndef _DISKIO_DEFINED +#define _DISKIO_DEFINED + +#ifdef __cplusplus +extern "C" { +#endif + +/* Status of Disk Functions */ +typedef BYTE DSTATUS; + +/* Results of Disk Functions */ +typedef enum { + RES_OK = 0, /* 0: Successful */ + RES_ERROR, /* 1: R/W Error */ + RES_WRPRT, /* 2: Write Protected */ + RES_NOTRDY, /* 3: Not Ready */ + RES_PARERR /* 4: Invalid Parameter */ +} DRESULT; + + +/*---------------------------------------*/ +/* Prototypes for disk control functions */ + + +DSTATUS disk_initialize (BYTE pdrv); +DSTATUS disk_status (BYTE pdrv); +DRESULT disk_read (BYTE pdrv, BYTE* buff, LBA_t sector, UINT count); +DRESULT disk_write (BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count); +DRESULT disk_ioctl (BYTE pdrv, BYTE cmd, void* buff); + + +/* Disk Status Bits (DSTATUS) */ + +#define STA_NOINIT 0x01 /* Drive not initialized */ +#define STA_NODISK 0x02 /* No medium in the drive */ +#define STA_PROTECT 0x04 /* Write protected */ + + +/* Command code for disk_ioctrl fucntion */ + +/* Generic command (Used by FatFs) */ +#define CTRL_SYNC 0 /* Complete pending write process (needed at FF_FS_READONLY == 0) */ +#define GET_SECTOR_COUNT 1 /* Get media size (needed at FF_USE_MKFS == 1) */ +#define GET_SECTOR_SIZE 2 /* Get sector size (needed at FF_MAX_SS != FF_MIN_SS) */ +#define GET_BLOCK_SIZE 3 /* Get erase block size (needed at FF_USE_MKFS == 1) */ +#define CTRL_TRIM 4 /* Inform device that the data on the block of sectors is no longer used (needed at FF_USE_TRIM == 1) */ + +/* Generic command (Not used by FatFs) */ +#define CTRL_POWER 5 /* Get/Set power status */ +#define CTRL_LOCK 6 /* Lock/Unlock media removal */ +#define CTRL_EJECT 7 /* Eject media */ +#define CTRL_FORMAT 8 /* Create physical format on the media */ + +/* MMC/SDC specific ioctl command */ +#define MMC_GET_TYPE 10 /* Get card type */ +#define MMC_GET_CSD 11 /* Get CSD */ +#define MMC_GET_CID 12 /* Get CID */ +#define MMC_GET_OCR 13 /* Get OCR */ +#define MMC_GET_SDSTAT 14 /* Get SD status */ +#define ISDIO_READ 55 /* Read data form SD iSDIO register */ +#define ISDIO_WRITE 56 /* Write data to SD iSDIO register */ +#define ISDIO_MRITE 57 /* Masked write data to SD iSDIO register */ + +/* ATA/CF specific ioctl command */ +#define ATA_GET_REV 20 /* Get F/W revision */ +#define ATA_GET_MODEL 21 /* Get model name */ +#define ATA_GET_SN 22 /* Get serial number */ + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/stm32f103_lcds_st75256/Core/Inc/ff.h b/stm32f103_lcds_st75256/Core/Inc/ff.h new file mode 100644 index 0000000..e0a7712 --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Inc/ff.h @@ -0,0 +1,429 @@ +/*----------------------------------------------------------------------------/ +/ FatFs - Generic FAT Filesystem module R0.15 / +/-----------------------------------------------------------------------------/ +/ +/ Copyright (C) 2022, ChaN, all right reserved. +/ +/ FatFs module is an open source software. Redistribution and use of FatFs in +/ source and binary forms, with or without modification, are permitted provided +/ that the following condition is met: + +/ 1. Redistributions of source code must retain the above copyright notice, +/ this condition and the following disclaimer. +/ +/ This software is provided by the copyright holder and contributors "AS IS" +/ and any warranties related to this software are DISCLAIMED. +/ The copyright owner or contributors be NOT LIABLE for any damages caused +/ by use of this software. +/ +/----------------------------------------------------------------------------*/ + + +#ifndef FF_DEFINED +#define FF_DEFINED 80286 /* Revision ID */ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "ffconf.h" /* FatFs configuration options */ + +#if FF_DEFINED != FFCONF_DEF +#error Wrong configuration file (ffconf.h). +#endif + + +/* Integer types used for FatFs API */ + +#if defined(_WIN32) /* Windows VC++ (for development only) */ +#define FF_INTDEF 2 +#include +typedef unsigned __int64 QWORD; +#include +#define isnan(v) _isnan(v) +#define isinf(v) (!_finite(v)) + +#elif (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__cplusplus) /* C99 or later */ +#define FF_INTDEF 2 +#include +typedef unsigned int UINT; /* int must be 16-bit or 32-bit */ +typedef unsigned char BYTE; /* char must be 8-bit */ +typedef uint16_t WORD; /* 16-bit unsigned integer */ +typedef uint32_t DWORD; /* 32-bit unsigned integer */ +typedef uint64_t QWORD; /* 64-bit unsigned integer */ +typedef WORD WCHAR; /* UTF-16 character type */ + +#else /* Earlier than C99 */ +#define FF_INTDEF 1 +typedef unsigned int UINT; /* int must be 16-bit or 32-bit */ +typedef unsigned char BYTE; /* char must be 8-bit */ +typedef unsigned short WORD; /* 16-bit unsigned integer */ +typedef unsigned long DWORD; /* 32-bit unsigned integer */ +typedef WORD WCHAR; /* UTF-16 character type */ +#endif + + +/* Type of file size and LBA variables */ + +#if FF_FS_EXFAT +#if FF_INTDEF != 2 +#error exFAT feature wants C99 or later +#endif +typedef QWORD FSIZE_t; +#if FF_LBA64 +typedef QWORD LBA_t; +#else +typedef DWORD LBA_t; +#endif +#else +#if FF_LBA64 +#error exFAT needs to be enabled when enable 64-bit LBA +#endif +typedef DWORD FSIZE_t; +typedef DWORD LBA_t; +#endif + + + +/* Type of path name strings on FatFs API (TCHAR) */ + +#if FF_USE_LFN && FF_LFN_UNICODE == 1 /* Unicode in UTF-16 encoding */ +typedef WCHAR TCHAR; +#define _T(x) L ## x +#define _TEXT(x) L ## x +#elif FF_USE_LFN && FF_LFN_UNICODE == 2 /* Unicode in UTF-8 encoding */ +typedef char TCHAR; +#define _T(x) u8 ## x +#define _TEXT(x) u8 ## x +#elif FF_USE_LFN && FF_LFN_UNICODE == 3 /* Unicode in UTF-32 encoding */ +typedef DWORD TCHAR; +#define _T(x) U ## x +#define _TEXT(x) U ## x +#elif FF_USE_LFN && (FF_LFN_UNICODE < 0 || FF_LFN_UNICODE > 3) +#error Wrong FF_LFN_UNICODE setting +#else /* ANSI/OEM code in SBCS/DBCS */ +typedef char TCHAR; +#define _T(x) x +#define _TEXT(x) x +#endif + + + +/* Definitions of volume management */ + +#if FF_MULTI_PARTITION /* Multiple partition configuration */ +typedef struct { + BYTE pd; /* Physical drive number */ + BYTE pt; /* Partition: 0:Auto detect, 1-4:Forced partition) */ +} PARTITION; +extern PARTITION VolToPart[]; /* Volume - Partition mapping table */ +#endif + +#if FF_STR_VOLUME_ID +#ifndef FF_VOLUME_STRS +extern const char* VolumeStr[FF_VOLUMES]; /* User defied volume ID */ +#endif +#endif + + + +/* Filesystem object structure (FATFS) */ + +typedef struct { + BYTE fs_type; /* Filesystem type (0:not mounted) */ + BYTE pdrv; /* Volume hosting physical drive */ + BYTE ldrv; /* Logical drive number (used only when FF_FS_REENTRANT) */ + BYTE n_fats; /* Number of FATs (1 or 2) */ + BYTE wflag; /* win[] status (b0:dirty) */ + BYTE fsi_flag; /* FSINFO status (b7:disabled, b0:dirty) */ + WORD id; /* Volume mount ID */ + WORD n_rootdir; /* Number of root directory entries (FAT12/16) */ + WORD csize; /* Cluster size [sectors] */ +#if FF_MAX_SS != FF_MIN_SS + WORD ssize; /* Sector size (512, 1024, 2048 or 4096) */ +#endif +#if FF_USE_LFN + WCHAR* lfnbuf; /* LFN working buffer */ +#endif +#if FF_FS_EXFAT + BYTE* dirbuf; /* Directory entry block scratchpad buffer for exFAT */ +#endif +#if !FF_FS_READONLY + DWORD last_clst; /* Last allocated cluster */ + DWORD free_clst; /* Number of free clusters */ +#endif +#if FF_FS_RPATH + DWORD cdir; /* Current directory start cluster (0:root) */ +#if FF_FS_EXFAT + DWORD cdc_scl; /* Containing directory start cluster (invalid when cdir is 0) */ + DWORD cdc_size; /* b31-b8:Size of containing directory, b7-b0: Chain status */ + DWORD cdc_ofs; /* Offset in the containing directory (invalid when cdir is 0) */ +#endif +#endif + DWORD n_fatent; /* Number of FAT entries (number of clusters + 2) */ + DWORD fsize; /* Number of sectors per FAT */ + LBA_t volbase; /* Volume base sector */ + LBA_t fatbase; /* FAT base sector */ + LBA_t dirbase; /* Root directory base sector (FAT12/16) or cluster (FAT32/exFAT) */ + LBA_t database; /* Data base sector */ +#if FF_FS_EXFAT + LBA_t bitbase; /* Allocation bitmap base sector */ +#endif + LBA_t winsect; /* Current sector appearing in the win[] */ + BYTE win[FF_MAX_SS]; /* Disk access window for Directory, FAT (and file data at tiny cfg) */ +} FATFS; + + + +/* Object ID and allocation information (FFOBJID) */ + +typedef struct { + FATFS* fs; /* Pointer to the hosting volume of this object */ + WORD id; /* Hosting volume's mount ID */ + BYTE attr; /* Object attribute */ + BYTE stat; /* Object chain status (b1-0: =0:not contiguous, =2:contiguous, =3:fragmented in this session, b2:sub-directory stretched) */ + DWORD sclust; /* Object data start cluster (0:no cluster or root directory) */ + FSIZE_t objsize; /* Object size (valid when sclust != 0) */ +#if FF_FS_EXFAT + DWORD n_cont; /* Size of first fragment - 1 (valid when stat == 3) */ + DWORD n_frag; /* Size of last fragment needs to be written to FAT (valid when not zero) */ + DWORD c_scl; /* Containing directory start cluster (valid when sclust != 0) */ + DWORD c_size; /* b31-b8:Size of containing directory, b7-b0: Chain status (valid when c_scl != 0) */ + DWORD c_ofs; /* Offset in the containing directory (valid when file object and sclust != 0) */ +#endif +#if FF_FS_LOCK + UINT lockid; /* File lock ID origin from 1 (index of file semaphore table Files[]) */ +#endif +} FFOBJID; + + + +/* File object structure (FIL) */ + +typedef struct { + FFOBJID obj; /* Object identifier (must be the 1st member to detect invalid object pointer) */ + BYTE flag; /* File status flags */ + BYTE err; /* Abort flag (error code) */ + FSIZE_t fptr; /* File read/write pointer (Zeroed on file open) */ + DWORD clust; /* Current cluster of fpter (invalid when fptr is 0) */ + LBA_t sect; /* Sector number appearing in buf[] (0:invalid) */ +#if !FF_FS_READONLY + LBA_t dir_sect; /* Sector number containing the directory entry (not used at exFAT) */ + BYTE* dir_ptr; /* Pointer to the directory entry in the win[] (not used at exFAT) */ +#endif +#if FF_USE_FASTSEEK + DWORD* cltbl; /* Pointer to the cluster link map table (nulled on open, set by application) */ +#endif +#if !FF_FS_TINY + BYTE buf[FF_MAX_SS]; /* File private data read/write window */ +#endif +} FIL; + + + +/* Directory object structure (DIR) */ + +typedef struct { + FFOBJID obj; /* Object identifier */ + DWORD dptr; /* Current read/write offset */ + DWORD clust; /* Current cluster */ + LBA_t sect; /* Current sector (0:Read operation has terminated) */ + BYTE* dir; /* Pointer to the directory item in the win[] */ + BYTE fn[12]; /* SFN (in/out) {body[8],ext[3],status[1]} */ +#if FF_USE_LFN + DWORD blk_ofs; /* Offset of current entry block being processed (0xFFFFFFFF:Invalid) */ +#endif +#if FF_USE_FIND + const TCHAR* pat; /* Pointer to the name matching pattern */ +#endif +} DIR; + + + +/* File information structure (FILINFO) */ + +typedef struct { + FSIZE_t fsize; /* File size */ + WORD fdate; /* Modified date */ + WORD ftime; /* Modified time */ + BYTE fattrib; /* File attribute */ +#if FF_USE_LFN + TCHAR altname[FF_SFN_BUF + 1];/* Alternative file name */ + TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */ +#else + TCHAR fname[12 + 1]; /* File name */ +#endif +} FILINFO; + + + +/* Format parameter structure (MKFS_PARM) */ + +typedef struct { + BYTE fmt; /* Format option (FM_FAT, FM_FAT32, FM_EXFAT and FM_SFD) */ + BYTE n_fat; /* Number of FATs */ + UINT align; /* Data area alignment (sector) */ + UINT n_root; /* Number of root directory entries */ + DWORD au_size; /* Cluster size (byte) */ +} MKFS_PARM; + + + +/* File function return code (FRESULT) */ + +typedef enum { + FR_OK = 0, /* (0) Succeeded */ + FR_DISK_ERR, /* (1) A hard error occurred in the low level disk I/O layer */ + FR_INT_ERR, /* (2) Assertion failed */ + FR_NOT_READY, /* (3) The physical drive cannot work */ + FR_NO_FILE, /* (4) Could not find the file */ + FR_NO_PATH, /* (5) Could not find the path */ + FR_INVALID_NAME, /* (6) The path name format is invalid */ + FR_DENIED, /* (7) Access denied due to prohibited access or directory full */ + FR_EXIST, /* (8) Access denied due to prohibited access */ + FR_INVALID_OBJECT, /* (9) The file/directory object is invalid */ + FR_WRITE_PROTECTED, /* (10) The physical drive is write protected */ + FR_INVALID_DRIVE, /* (11) The logical drive number is invalid */ + FR_NOT_ENABLED, /* (12) The volume has no work area */ + FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */ + FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any problem */ + FR_TIMEOUT, /* (15) Could not get a grant to access the volume within defined period */ + FR_LOCKED, /* (16) The operation is rejected according to the file sharing policy */ + FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be allocated */ + FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > FF_FS_LOCK */ + FR_INVALID_PARAMETER /* (19) Given parameter is invalid */ +} FRESULT; + + + + +/*--------------------------------------------------------------*/ +/* FatFs Module Application Interface */ +/*--------------------------------------------------------------*/ + +FRESULT f_open (FIL* fp, const TCHAR* path, BYTE mode); /* Open or create a file */ +FRESULT f_close (FIL* fp); /* Close an open file object */ +FRESULT f_read (FIL* fp, void* buff, UINT btr, UINT* br); /* Read data from the file */ +FRESULT f_write (FIL* fp, const void* buff, UINT btw, UINT* bw); /* Write data to the file */ +FRESULT f_lseek (FIL* fp, FSIZE_t ofs); /* Move file pointer of the file object */ +FRESULT f_truncate (FIL* fp); /* Truncate the file */ +FRESULT f_sync (FIL* fp); /* Flush cached data of the writing file */ +FRESULT f_opendir (DIR* dp, const TCHAR* path); /* Open a directory */ +FRESULT f_closedir (DIR* dp); /* Close an open directory */ +FRESULT f_readdir (DIR* dp, FILINFO* fno); /* Read a directory item */ +FRESULT f_findfirst (DIR* dp, FILINFO* fno, const TCHAR* path, const TCHAR* pattern); /* Find first file */ +FRESULT f_findnext (DIR* dp, FILINFO* fno); /* Find next file */ +FRESULT f_mkdir (const TCHAR* path); /* Create a sub directory */ +FRESULT f_unlink (const TCHAR* path); /* Delete an existing file or directory */ +FRESULT f_rename (const TCHAR* path_old, const TCHAR* path_new); /* Rename/Move a file or directory */ +FRESULT f_stat (const TCHAR* path, FILINFO* fno); /* Get file status */ +FRESULT f_chmod (const TCHAR* path, BYTE attr, BYTE mask); /* Change attribute of a file/dir */ +FRESULT f_utime (const TCHAR* path, const FILINFO* fno); /* Change timestamp of a file/dir */ +FRESULT f_chdir (const TCHAR* path); /* Change current directory */ +FRESULT f_chdrive (const TCHAR* path); /* Change current drive */ +FRESULT f_getcwd (TCHAR* buff, UINT len); /* Get current directory */ +FRESULT f_getfree (const TCHAR* path, DWORD* nclst, FATFS** fatfs); /* Get number of free clusters on the drive */ +FRESULT f_getlabel (const TCHAR* path, TCHAR* label, DWORD* vsn); /* Get volume label */ +FRESULT f_setlabel (const TCHAR* label); /* Set volume label */ +FRESULT f_forward (FIL* fp, UINT(*func)(const BYTE*,UINT), UINT btf, UINT* bf); /* Forward data to the stream */ +FRESULT f_expand (FIL* fp, FSIZE_t fsz, BYTE opt); /* Allocate a contiguous block to the file */ +FRESULT f_mount (FATFS* fs, const TCHAR* path, BYTE opt); /* Mount/Unmount a logical drive */ +FRESULT f_mkfs (const TCHAR* path, const MKFS_PARM* opt, void* work, UINT len); /* Create a FAT volume */ +FRESULT f_fdisk (BYTE pdrv, const LBA_t ptbl[], void* work); /* Divide a physical drive into some partitions */ +FRESULT f_setcp (WORD cp); /* Set current code page */ +int f_putc (TCHAR c, FIL* fp); /* Put a character to the file */ +int f_puts (const TCHAR* str, FIL* cp); /* Put a string to the file */ +int f_printf (FIL* fp, const TCHAR* str, ...); /* Put a formatted string to the file */ +TCHAR* f_gets (TCHAR* buff, int len, FIL* fp); /* Get a string from the file */ + +/* Some API fucntions are implemented as macro */ + +#define f_eof(fp) ((int)((fp)->fptr == (fp)->obj.objsize)) +#define f_error(fp) ((fp)->err) +#define f_tell(fp) ((fp)->fptr) +#define f_size(fp) ((fp)->obj.objsize) +#define f_rewind(fp) f_lseek((fp), 0) +#define f_rewinddir(dp) f_readdir((dp), 0) +#define f_rmdir(path) f_unlink(path) +#define f_unmount(path) f_mount(0, path, 0) + + + + +/*--------------------------------------------------------------*/ +/* Additional Functions */ +/*--------------------------------------------------------------*/ + +/* RTC function (provided by user) */ +#if !FF_FS_READONLY && !FF_FS_NORTC +DWORD get_fattime (void); /* Get current time */ +#endif + + +/* LFN support functions (defined in ffunicode.c) */ + +#if FF_USE_LFN >= 1 +WCHAR ff_oem2uni (WCHAR oem, WORD cp); /* OEM code to Unicode conversion */ +WCHAR ff_uni2oem (DWORD uni, WORD cp); /* Unicode to OEM code conversion */ +DWORD ff_wtoupper (DWORD uni); /* Unicode upper-case conversion */ +#endif + + +/* O/S dependent functions (samples available in ffsystem.c) */ + +#if FF_USE_LFN == 3 /* Dynamic memory allocation */ +void* ff_memalloc (UINT msize); /* Allocate memory block */ +void ff_memfree (void* mblock); /* Free memory block */ +#endif +#if FF_FS_REENTRANT /* Sync functions */ +int ff_mutex_create (int vol); /* Create a sync object */ +void ff_mutex_delete (int vol); /* Delete a sync object */ +int ff_mutex_take (int vol); /* Lock sync object */ +void ff_mutex_give (int vol); /* Unlock sync object */ +#endif + + + + +/*--------------------------------------------------------------*/ +/* Flags and Offset Address */ +/*--------------------------------------------------------------*/ + +/* File access mode and open method flags (3rd argument of f_open) */ +#define FA_READ 0x01 +#define FA_WRITE 0x02 +#define FA_OPEN_EXISTING 0x00 +#define FA_CREATE_NEW 0x04 +#define FA_CREATE_ALWAYS 0x08 +#define FA_OPEN_ALWAYS 0x10 +#define FA_OPEN_APPEND 0x30 + +/* Fast seek controls (2nd argument of f_lseek) */ +#define CREATE_LINKMAP ((FSIZE_t)0 - 1) + +/* Format options (2nd argument of f_mkfs) */ +#define FM_FAT 0x01 +#define FM_FAT32 0x02 +#define FM_EXFAT 0x04 +#define FM_ANY 0x07 +#define FM_SFD 0x08 + +/* Filesystem type (FATFS.fs_type) */ +#define FS_FAT12 1 +#define FS_FAT16 2 +#define FS_FAT32 3 +#define FS_EXFAT 4 + +/* File attribute bits for directory entry (FILINFO.fattrib) */ +#define AM_RDO 0x01 /* Read only */ +#define AM_HID 0x02 /* Hidden */ +#define AM_SYS 0x04 /* System */ +#define AM_DIR 0x10 /* Directory */ +#define AM_ARC 0x20 /* Archive */ + + +#ifdef __cplusplus +} +#endif + +#endif /* FF_DEFINED */ diff --git a/stm32f103_lcds_st75256/Core/Inc/ffconf.h b/stm32f103_lcds_st75256/Core/Inc/ffconf.h new file mode 100644 index 0000000..653d702 --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Inc/ffconf.h @@ -0,0 +1,296 @@ +/*---------------------------------------------------------------------------/ +/ Configurations of FatFs Module +/---------------------------------------------------------------------------*/ + +#define FFCONF_DEF 80286 /* Revision ID */ + +/*---------------------------------------------------------------------------/ +/ Function Configurations +/---------------------------------------------------------------------------*/ + +#define FF_FS_READONLY 0 +/* This option switches read-only configuration. (0:Read/Write or 1:Read-only) +/ Read-only configuration removes writing API functions, f_write(), f_sync(), +/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree() +/ and optional writing functions as well. */ + + +#define FF_FS_MINIMIZE 0 +/* This option defines minimization level to remove some basic API functions. +/ +/ 0: Basic functions are fully enabled. +/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename() +/ are removed. +/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1. +/ 3: f_lseek() function is removed in addition to 2. */ + + +#define FF_USE_FIND 0 +/* This option switches filtered directory read functions, f_findfirst() and +/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */ + + +#define FF_USE_MKFS 0 +/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */ + + +#define FF_USE_FASTSEEK 0 +/* This option switches fast seek function. (0:Disable or 1:Enable) */ + + +#define FF_USE_EXPAND 0 +/* This option switches f_expand function. (0:Disable or 1:Enable) */ + + +#define FF_USE_CHMOD 0 +/* This option switches attribute manipulation functions, f_chmod() and f_utime(). +/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */ + + +#define FF_USE_LABEL 0 +/* This option switches volume label functions, f_getlabel() and f_setlabel(). +/ (0:Disable or 1:Enable) */ + + +#define FF_USE_FORWARD 0 +/* This option switches f_forward() function. (0:Disable or 1:Enable) */ + + +#define FF_USE_STRFUNC 0 +#define FF_PRINT_LLI 1 +#define FF_PRINT_FLOAT 1 +#define FF_STRF_ENCODE 3 +/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and +/ f_printf(). +/ +/ 0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect. +/ 1: Enable without LF-CRLF conversion. +/ 2: Enable with LF-CRLF conversion. +/ +/ FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2 +/ makes f_printf() support floating point argument. These features want C99 or later. +/ When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character +/ encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE +/ to be read/written via those functions. +/ +/ 0: ANSI/OEM in current CP +/ 1: Unicode in UTF-16LE +/ 2: Unicode in UTF-16BE +/ 3: Unicode in UTF-8 +*/ + + +/*---------------------------------------------------------------------------/ +/ Locale and Namespace Configurations +/---------------------------------------------------------------------------*/ + +#define FF_CODE_PAGE 936 +/* This option specifies the OEM code page to be used on the target system. +/ Incorrect code page setting can cause a file open failure. +/ +/ 437 - U.S. +/ 720 - Arabic +/ 737 - Greek +/ 771 - KBL +/ 775 - Baltic +/ 850 - Latin 1 +/ 852 - Latin 2 +/ 855 - Cyrillic +/ 857 - Turkish +/ 860 - Portuguese +/ 861 - Icelandic +/ 862 - Hebrew +/ 863 - Canadian French +/ 864 - Arabic +/ 865 - Nordic +/ 866 - Russian +/ 869 - Greek 2 +/ 932 - Japanese (DBCS) +/ 936 - Simplified Chinese (DBCS) +/ 949 - Korean (DBCS) +/ 950 - Traditional Chinese (DBCS) +/ 0 - Include all code pages above and configured by f_setcp() +*/ + + +#define FF_USE_LFN 0 +#define FF_MAX_LFN 255 +/* The FF_USE_LFN switches the support for LFN (long file name). +/ +/ 0: Disable LFN. FF_MAX_LFN has no effect. +/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe. +/ 2: Enable LFN with dynamic working buffer on the STACK. +/ 3: Enable LFN with dynamic working buffer on the HEAP. +/ +/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function +/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and +/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled. +/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can +/ be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN +/ specification. +/ When use stack for the working buffer, take care on stack overflow. When use heap +/ memory for the working buffer, memory management functions, ff_memalloc() and +/ ff_memfree() exemplified in ffsystem.c, need to be added to the project. */ + + +#define FF_LFN_UNICODE 0 +/* This option switches the character encoding on the API when LFN is enabled. +/ +/ 0: ANSI/OEM in current CP (TCHAR = char) +/ 1: Unicode in UTF-16 (TCHAR = WCHAR) +/ 2: Unicode in UTF-8 (TCHAR = char) +/ 3: Unicode in UTF-32 (TCHAR = DWORD) +/ +/ Also behavior of string I/O functions will be affected by this option. +/ When LFN is not enabled, this option has no effect. */ + + +#define FF_LFN_BUF 255 +#define FF_SFN_BUF 12 +/* This set of options defines size of file name members in the FILINFO structure +/ which is used to read out directory items. These values should be suffcient for +/ the file names to read. The maximum possible length of the read file name depends +/ on character encoding. When LFN is not enabled, these options have no effect. */ + + +#define FF_FS_RPATH 0 +/* This option configures support for relative path. +/ +/ 0: Disable relative path and remove related functions. +/ 1: Enable relative path. f_chdir() and f_chdrive() are available. +/ 2: f_getcwd() function is available in addition to 1. +*/ + + +/*---------------------------------------------------------------------------/ +/ Drive/Volume Configurations +/---------------------------------------------------------------------------*/ + +#define FF_VOLUMES 1 +/* Number of volumes (logical drives) to be used. (1-10) */ + + +#define FF_STR_VOLUME_ID 0 +#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3" +/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings. +/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive +/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each +/ logical drives. Number of items must not be less than FF_VOLUMES. Valid +/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are +/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is +/ not defined, a user defined volume string table is needed as: +/ +/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",... +*/ + + +#define FF_MULTI_PARTITION 0 +/* This option switches support for multiple volumes on the physical drive. +/ By default (0), each logical drive number is bound to the same physical drive +/ number and only an FAT volume found on the physical drive will be mounted. +/ When this function is enabled (1), each logical drive number can be bound to +/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk() +/ function will be available. */ + + +#define FF_MIN_SS 512 +#define FF_MAX_SS 512 +/* This set of options configures the range of sector size to be supported. (512, +/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and +/ harddisk, but a larger value may be required for on-board flash memory and some +/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured +/ for variable sector size mode and disk_ioctl() function needs to implement +/ GET_SECTOR_SIZE command. */ + + +#define FF_LBA64 0 +/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable) +/ To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */ + + +#define FF_MIN_GPT 0x10000000 +/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and +/ f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */ + + +#define FF_USE_TRIM 0 +/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable) +/ To enable Trim function, also CTRL_TRIM command should be implemented to the +/ disk_ioctl() function. */ + + + +/*---------------------------------------------------------------------------/ +/ System Configurations +/---------------------------------------------------------------------------*/ + +#define FF_FS_TINY 0 +/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny) +/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes. +/ Instead of private sector buffer eliminated from the file object, common sector +/ buffer in the filesystem object (FATFS) is used for the file data transfer. */ + + +#define FF_FS_EXFAT 0 +/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable) +/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1) +/ Note that enabling exFAT discards ANSI C (C89) compatibility. */ + + +#define FF_FS_NORTC 1 +#define FF_NORTC_MON 1 +#define FF_NORTC_MDAY 1 +#define FF_NORTC_YEAR 2025 +/* The option FF_FS_NORTC switches timestamp feature. If the system does not have +/ an RTC or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable the +/ timestamp feature. Every object modified by FatFs will have a fixed timestamp +/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time. +/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be +/ added to the project to read current time form real-time clock. FF_NORTC_MON, +/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect. +/ These options have no effect in read-only configuration (FF_FS_READONLY = 1). */ + + +#define FF_FS_NOFSINFO 0 +/* If you need to know correct free space on the FAT32 volume, set bit 0 of this +/ option, and f_getfree() function at the first time after volume mount will force +/ a full FAT scan. Bit 1 controls the use of last allocated cluster number. +/ +/ bit0=0: Use free cluster count in the FSINFO if available. +/ bit0=1: Do not trust free cluster count in the FSINFO. +/ bit1=0: Use last allocated cluster number in the FSINFO if available. +/ bit1=1: Do not trust last allocated cluster number in the FSINFO. +*/ + + +#define FF_FS_LOCK 0 +/* The option FF_FS_LOCK switches file lock function to control duplicated file open +/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY +/ is 1. +/ +/ 0: Disable file lock function. To avoid volume corruption, application program +/ should avoid illegal open, remove and rename to the open objects. +/ >0: Enable file lock function. The value defines how many files/sub-directories +/ can be opened simultaneously under file lock control. Note that the file +/ lock control is independent of re-entrancy. */ + + +#define FF_FS_REENTRANT 0 +#define FF_FS_TIMEOUT 1000 +/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs +/ module itself. Note that regardless of this option, file access to different +/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs() +/ and f_fdisk() function, are always not re-entrant. Only file/directory access +/ to the same volume is under control of this featuer. +/ +/ 0: Disable re-entrancy. FF_FS_TIMEOUT have no effect. +/ 1: Enable re-entrancy. Also user provided synchronization handlers, +/ ff_mutex_create(), ff_mutex_delete(), ff_mutex_take() and ff_mutex_give() +/ function, must be added to the project. Samples are available in ffsystem.c. +/ +/ The FF_FS_TIMEOUT defines timeout period in unit of O/S time tick. +*/ + + + +/*--- End of configuration options ---*/ diff --git a/stm32f103_lcds_st75256/Core/Inc/main.h b/stm32f103_lcds_st75256/Core/Inc/main.h index ce7dc92..e6aefad 100644 --- a/stm32f103_lcds_st75256/Core/Inc/main.h +++ b/stm32f103_lcds_st75256/Core/Inc/main.h @@ -42,6 +42,8 @@ extern "C" { /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ extern SPI_HandleTypeDef hspi1; +extern SPI_HandleTypeDef hspi2; +extern TIM_HandleTypeDef htim4; /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ @@ -57,7 +59,11 @@ void Error_Handler(void); /* USER CODE END EFP */ /* Private defines -----------------------------------------------------------*/ +#define BSP_SD_SPI hspi2 #define BSP_LCD_SPI hspi1 +#define APP_FRAME_TIMER htim4 +#define LED_Pin GPIO_PIN_13 +#define LED_GPIO_Port GPIOC #define LCD_CS_Pin GPIO_PIN_4 #define LCD_CS_GPIO_Port GPIOA #define LCD_SCK_Pin GPIO_PIN_5 @@ -66,6 +72,14 @@ void Error_Handler(void); #define LCD_RS_GPIO_Port GPIOA #define LCD_DAT_Pin GPIO_PIN_7 #define LCD_DAT_GPIO_Port GPIOA +#define SD_CS_Pin GPIO_PIN_12 +#define SD_CS_GPIO_Port GPIOB +#define SD_SCK_Pin GPIO_PIN_13 +#define SD_SCK_GPIO_Port GPIOB +#define SD_MISO_Pin GPIO_PIN_14 +#define SD_MISO_GPIO_Port GPIOB +#define SD_MOSI_Pin GPIO_PIN_15 +#define SD_MOSI_GPIO_Port GPIOB /* USER CODE BEGIN Private defines */ diff --git a/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_hal_conf.h b/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_hal_conf.h index 4fcbcf1..e250337 100644 --- a/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_hal_conf.h +++ b/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_hal_conf.h @@ -64,7 +64,7 @@ /*#define HAL_SMARTCARD_MODULE_ENABLED */ #define HAL_SPI_MODULE_ENABLED /*#define HAL_SRAM_MODULE_ENABLED */ -/*#define HAL_TIM_MODULE_ENABLED */ +#define HAL_TIM_MODULE_ENABLED /*#define HAL_UART_MODULE_ENABLED */ /*#define HAL_USART_MODULE_ENABLED */ /*#define HAL_WWDG_MODULE_ENABLED */ diff --git a/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_it.h b/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_it.h index 51e44fb..a4f2f9c 100644 --- a/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_it.h +++ b/stm32f103_lcds_st75256/Core/Inc/stm32f1xx_it.h @@ -56,7 +56,11 @@ void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void DMA1_Channel3_IRQHandler(void); +void DMA1_Channel4_IRQHandler(void); +void DMA1_Channel5_IRQHandler(void); +void TIM4_IRQHandler(void); void SPI1_IRQHandler(void); +void SPI2_IRQHandler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ diff --git a/stm32f103_lcds_st75256/Core/Src/app_main.c b/stm32f103_lcds_st75256/Core/Src/app_main.c new file mode 100644 index 0000000..4911bac --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Src/app_main.c @@ -0,0 +1,194 @@ +#include "app_main.h" +#include +#include +#include "ff.h" +#include "bsp_sd_spi.h" +#include "bsp_lcd_st75256.h" + +void app_fatfs_test(void); +void app_play_badapple(void); + +static FATFS fatfs; + +void app_main(void) +{ + bsp_lcd_init_regs(); + +#if BSP_LCD_4GRAY_ENABLE + app_play_badapple(); +#else + app_fatfs_test(); +#endif + + while (1) { + HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin); + HAL_Delay(500); + } +} + +#if BSP_LCD_4GRAY_ENABLE + +#define APP_BADAPPLE_X_PIXELS 192 +#define APP_BADAPPLE_Y_PIXELS 128 +#define APP_BADAPPLE_FRAME_SIZE ((APP_BADAPPLE_X_PIXELS) * (APP_BADAPPLE_Y_PIXELS) / 4) //4灰 + +volatile uint8_t next_frame = 0; + +void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + if (htim == &APP_FRAME_TIMER) { + next_frame = 1; + } +} + +void app_play_badapple(void) +{ + FRESULT f_result = f_mount(&fatfs, "/", 1); //初始化fatfs + if (f_result != FR_OK) { + return; + } + + bsp_lcd_clear(); + HAL_TIM_Base_Start_IT(&APP_FRAME_TIMER); //启动帧间隔计时定时器 + + while (1) { + FIL file; + f_result = f_open(&file, "BadApple.bin", FA_READ); + if (f_result != FR_OK) { + return; + } + + while (1) { //播放循环 + UINT br; + static uint8_t frame_buffer[APP_BADAPPLE_FRAME_SIZE]; + f_result = f_read(&file, frame_buffer, sizeof(frame_buffer), &br); + if (br < sizeof(frame_buffer) || f_result != FR_OK) { + break; + } + + bsp_lcd_show_bitmap(0, (APP_BADAPPLE_Y_PIXELS / 4) - 1, + (BSP_LCD_X_PIXELS - APP_BADAPPLE_X_PIXELS) / 2, (BSP_LCD_X_PIXELS + APP_BADAPPLE_X_PIXELS) / 2 - 1, + frame_buffer); + + HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET); + while (next_frame == 0); + next_frame = 0; + HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET); + } + + f_close(&file); + } +} + +#else + +void app_fatfs_test(void) +{ + const char *path = "/rwtest.bin"; + static uint8_t buffer_write[4096 + 512]; + static uint8_t buffer_read[4096 + 512]; + + for (uint32_t i = 0; i < sizeof(buffer_write); i += 4) { + uint32_t rand_int = rand(); + buffer_write[i ] = rand_int >> 24; + buffer_write[i + 1] = rand_int >> 16; + buffer_write[i + 2] = rand_int >> 8; + buffer_write[i + 3] = rand_int; + } + + bsp_lcd_clear(); + + char string[64]; + uint8_t char_count = 0; + uint8_t line_count = 0; + + FIL file; + UINT bw, br; + FRESULT f_result; + + char_count = sprintf(string, "mounting fatfs..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_mount(&fatfs, "/", 1); //初始化FATFS + sprintf(string, " done, result %d", f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + bsp_card_info_t card_info; + bsp_sd_spi_get_card_info(&card_info); + sprintf(string, "card type: %d, file system type: %d", card_info.card_type, fatfs.fs_type); + bsp_lcd_show_6_8_string(line_count, 0, string); + + line_count ++; + + sprintf(string, "sector count: %d, capacity: %dMB", (int)card_info.sector_count, (int)(card_info.sector_count >> 11)); + bsp_lcd_show_6_8_string(line_count, 0, string); + + line_count ++; + + char_count = sprintf(string, "creating file..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_open(&file, path, FA_CREATE_ALWAYS | FA_WRITE); + sprintf(string, " done, result %d", f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + char_count = sprintf(string, "writing file..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_write(&file, buffer_write, sizeof(buffer_write), &bw); + sprintf(string, " %d bytes, result %d", bw, f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + char_count = sprintf(string, "closing file..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_close(&file); + sprintf(string, " done, result %d", f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + char_count = sprintf(string, "re-opening file..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_open(&file, path, FA_READ); + sprintf(string, " done, result %d", f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + char_count = sprintf(string, "reading file..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_read(&file, buffer_read, sizeof(buffer_read), &br); + sprintf(string, " %d bytes, result %d", br, f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + char_count = sprintf(string, "closing file..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + f_result = f_close(&file); + sprintf(string, " done, result %d", f_result); + bsp_lcd_show_6_8_string(line_count, char_count * 6, string); + + line_count ++; + + char_count = sprintf(string, "comparing buffers..."); + bsp_lcd_show_6_8_string(line_count, 0, string); + uint8_t match = 1; + for (uint32_t i = 0; i < sizeof(buffer_read); i ++) { + if (buffer_read[i] != buffer_write[i]) { + match = 0; + break; + } + } + + if (match) { + bsp_lcd_show_6_8_string(line_count, char_count * 6, " matches!"); + } else { + bsp_lcd_show_6_8_string(line_count, char_count * 6, " mismatches!"); + } +} + +#endif diff --git a/stm32f103_lcds_st75256/Core/Src/bsp_lcd_st75256.c b/stm32f103_lcds_st75256/Core/Src/bsp_lcd_st75256.c index d312d3b..8e29928 100644 --- a/stm32f103_lcds_st75256/Core/Src/bsp_lcd_st75256.c +++ b/stm32f103_lcds_st75256/Core/Src/bsp_lcd_st75256.c @@ -1,17 +1,15 @@ #include "bsp_lcd_st75256.h" -volatile uint8_t bsp_lcd_dma_done = 0; +volatile uint8_t lcd_dma_done = 0; #if !BSP_LCD_4GRAY_ENABLE const static uint8_t bsp_lcd_6_8_fonts[][6]; const static uint8_t bsp_lcd_8_16_fonts[][16]; #endif -void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) +void bsp_lcd_dma_done_callback(void) { - if (hspi == &BSP_LCD_SPI) { - bsp_lcd_dma_done = 1; - } + lcd_dma_done = 1; } static void bsp_lcd_write_command(uint8_t cmd) @@ -40,10 +38,10 @@ static void bsp_lcd_write_data_dma(const uint8_t *dat, uint16_t len) HAL_SPI_Transmit_DMA(&BSP_LCD_SPI, dat, len); - while (bsp_lcd_dma_done == 0) { + while (lcd_dma_done == 0) { __WFI(); } - bsp_lcd_dma_done = 0; + lcd_dma_done = 0; HAL_GPIO_WritePin(LCD_CS_GPIO_Port, LCD_CS_Pin, GPIO_PIN_SET); } @@ -98,6 +96,7 @@ void bsp_lcd_init_regs(void) void bsp_lcd_clear(void) { + //TODO: 后续升级为内存地址不自增模式发送dummy byte从而避免栈内存占用 uint8_t zero_buffer[BSP_LCD_COLUMN_COUNT] = { 0 }; for (uint8_t i = 0; i < BSP_LCD_PAGE_COUNT; i ++) { diff --git a/stm32f103_lcds_st75256/Core/Src/bsp_sd_spi.c b/stm32f103_lcds_st75256/Core/Src/bsp_sd_spi.c new file mode 100644 index 0000000..f2400bf --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Src/bsp_sd_spi.c @@ -0,0 +1,455 @@ +#include "bsp_sd_spi.h" +#include + +#define SD_DUMMY_BYTE 0xFF + +#define SD_CMD_GO_IDLE_STATE 0 /* CMD0 = 0x40 */ +#define SD_CMD_SEND_OP_COND 1 /* CMD1 = 0x41 */ +#define SD_CMD_SEND_IF_COND 8 /* CMD8 = 0x48 */ +#define SD_CMD_SEND_CSD 9 /* CMD9 = 0x49 */ +#define SD_CMD_SEND_CID 10 /* CMD10 = 0x4A */ +#define SD_CMD_STOP_TRANSMISSION 12 /* CMD12 = 0x4C */ +#define SD_CMD_SEND_STATUS 13 /* CMD13 = 0x4D */ +#define SD_CMD_SET_BLOCKLEN 16 /* CMD16 = 0x50 */ +#define SD_CMD_READ_SINGLE_BLOCK 17 /* CMD17 = 0x51 */ +#define SD_CMD_READ_MULT_BLOCK 18 /* CMD18 = 0x52 */ +#define SD_CMD_SET_BLOCK_COUNT 23 /* CMD23 = 0x57 */ +#define SD_CMD_WRITE_SINGLE_BLOCK 24 /* CMD24 = 0x58 */ +#define SD_CMD_WRITE_MULT_BLOCK 25 /* CMD25 = 0x59 */ +#define SD_CMD_PROG_CSD 27 /* CMD27 = 0x5B */ +#define SD_CMD_SET_WRITE_PROT 28 /* CMD28 = 0x5C */ +#define SD_CMD_CLR_WRITE_PROT 29 /* CMD29 = 0x5D */ +#define SD_CMD_SEND_WRITE_PROT 30 /* CMD30 = 0x5E */ +#define SD_CMD_SD_ERASE_GRP_START 32 /* CMD32 = 0x60 */ +#define SD_CMD_SD_ERASE_GRP_END 33 /* CMD33 = 0x61 */ +#define SD_CMD_UNTAG_SECTOR 34 /* CMD34 = 0x62 */ +#define SD_CMD_ERASE_GRP_START 35 /* CMD35 = 0x63 */ +#define SD_CMD_ERASE_GRP_END 36 /* CMD36 = 0x64 */ +#define SD_CMD_UNTAG_ERASE_GROUP 37 /* CMD37 = 0x65 */ +#define SD_CMD_ERASE 38 /* CMD38 = 0x66 */ +#define SD_CMD_SD_APP_OP_COND 41 /* CMD41 = 0x69 */ +#define SD_CMD_APP_CMD 55 /* CMD55 = 0x77 */ +#define SD_CMD_READ_OCR 58 /* CMD55 = 0x7A */ + +#define SD_R1_NO_ERROR 0x00 +#define SD_R1_RESP_IDLE_BIT 0x01 +#define SD_R1_ILLEGAL_COMMAND 0x04 +#define SD_DATA_RESP_OK 0x05 + +#define SD_SPI_PRESCALER_LOW SPI_BAUDRATEPRESCALER_256 +#define SD_SPI_PRESCALER_HIGH SPI_BAUDRATEPRESCALER_2 + +#define SD_WAIT_CMD_RESP_TIMEOUT 10000U //等待指令响应的超时 +#define SD_WAIT_READ_WRITE_TIMEOUT 100000U //等待读写操作的超时 + +static bsp_card_info_t card_info = { 0 }; + +static volatile uint8_t dma_tx_done = 0; +static volatile uint8_t dma_rx_done = 0; + +void bsp_sd_dma_tx_done_callback(void) +{ + dma_tx_done = 1; +} + +void bsp_sd_dma_rx_done_callback(void) +{ + dma_rx_done = 1; +} + +/* IO函数 */ +static void sd_set_spi_prescaler(uint32_t prescaler) +{ + BSP_SD_SPI.Init.BaudRatePrescaler = prescaler; + HAL_SPI_Init(&BSP_SD_SPI); +} + +static void sd_select(void) +{ + HAL_GPIO_WritePin(SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_RESET); +} + +static void sd_deselect(void) +{ + HAL_GPIO_WritePin(SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_SET); +} + +static uint8_t sd_write_read_byte(uint8_t tx_byte) +{ + uint8_t rx_byte; + HAL_SPI_TransmitReceive(&BSP_SD_SPI, &tx_byte, &rx_byte, 1, 100); + return rx_byte; +} + +static void sd_write_bytes(const uint8_t *buffer, uint16_t length) +{ + HAL_SPI_Transmit_DMA(&BSP_SD_SPI, buffer, length); + + while (dma_tx_done == 0) { + __WFI(); + } + dma_tx_done = 0; +} + +static void sd_read_bytes(uint8_t *buffer, uint16_t length) +{ + //TODO: 后续升级为内存地址不自增模式发送dummy byte从而避免memset耗时 + memset(buffer, SD_DUMMY_BYTE, length); //保持MOSI线在读取过程中一直为高 + HAL_SPI_Receive_DMA(&BSP_SD_SPI, buffer, length); //主机模式下实际为调用HAL_SPI_TransmitReceive + + while (dma_rx_done == 0) { + __WFI(); + } + dma_rx_done = 0; +} + +static void sd_enable(void) +{ + sd_write_read_byte(SD_DUMMY_BYTE); //发送额外的8个时钟 + sd_select(); +} + +static void sd_disable(void) +{ + sd_deselect(); + sd_write_read_byte(SD_DUMMY_BYTE); //发送额外的8个时钟 +} + +static bsp_sd_error_t sd_wait_response(uint8_t response) +{ + uint32_t timeout = SD_WAIT_READ_WRITE_TIMEOUT; + + do { + if (sd_write_read_byte(SD_DUMMY_BYTE) == response) { + return bsp_sd_error_none; + } + } while (timeout --); + + return bsp_sd_error_timeout; +} + +static uint8_t sd_send_command(uint8_t command, uint32_t argument, uint8_t crc) +{ + sd_enable(); //拉低片选 + + sd_write_bytes((uint8_t[]){ command | 0x40, argument >> 24, argument >> 16, argument >> 8, argument, crc }, 6); //发送指令+数据+CRC校验值 + + uint8_t r1_response = 0xFF; + uint32_t timeout = SD_WAIT_CMD_RESP_TIMEOUT; + do { + r1_response = sd_write_read_byte(SD_DUMMY_BYTE); //等待卡响应或超时 + } while ((r1_response == 0xFF || r1_response == 0x7F) && timeout --); //一些较旧的卡的CMD12回应首字节为0x7F,此后才为0xFF + + return r1_response; +} + +static bsp_sd_error_t sd_wait_ready(void) +{ + bsp_sd_error_t error = bsp_sd_error_timeout; + + uint32_t timeout = SD_WAIT_READ_WRITE_TIMEOUT; + do { + uint8_t r1_response = sd_send_command(SD_CMD_SEND_STATUS, 0x00, 0x00); //发送CMD13请求卡片状态 + if (r1_response != SD_R1_NO_ERROR) { + error = bsp_sd_error_invalid_response; + goto error; + } + + uint8_t status_register[4]; + for (uint8_t i = 0; i < 4; i ++) { //继续读取R7格式回应的剩余4字节 + status_register[i] = sd_write_read_byte(SD_DUMMY_BYTE); + } + + if (status_register[2] & 0x01) { //READY_FOR_DATA=1 + error = bsp_sd_error_none; + goto error; + } + } while (timeout --); + +error: + sd_disable(); + return error; +} + +bsp_sd_error_t bsp_sd_init(void) +{ + bsp_sd_error_t error = bsp_sd_error_none; + + sd_set_spi_prescaler(SD_SPI_PRESCALER_LOW); //初始化SD卡时将SPI调至低速 + + for (uint8_t i = 0; i < 10; i ++) { + sd_write_read_byte(0xFF); //在MOSI上发送不少于74个脉冲 + } + + card_info.card_type = bsp_sd_type_unknown; //复位卡版本 + + uint8_t r1_response; + uint32_t timeout = SD_WAIT_CMD_RESP_TIMEOUT; + do { + r1_response = sd_send_command(SD_CMD_GO_IDLE_STATE, 0, 0x95); //等待卡进入IDLE状态 + } while ((r1_response != SD_R1_RESP_IDLE_BIT) && timeout --); + + if (timeout == 0) { + error = bsp_sd_error_timeout; + goto error; + } + + r1_response = sd_send_command(SD_CMD_SEND_IF_COND, 0x1AA, 0x87); //发送CMD8判断卡是否为SD V2.0 + if (r1_response & SD_R1_ILLEGAL_COMMAND) { //CMD8无响应则卡为SD V1.0或MMC卡 + sd_disable(); //结束CMD8 + /* ACMD41有响应为SD V1.0否则为MMC卡 */ + timeout = SD_WAIT_CMD_RESP_TIMEOUT; + do { + sd_send_command(SD_CMD_APP_CMD, 0x00, 0x00); //在发送ACMD之前都需要发送CMD55 + r1_response = sd_send_command(SD_CMD_SD_APP_OP_COND, 0x00, 0x00); //发送ACMD41尝试初始化卡 + } while (r1_response != SD_R1_NO_ERROR && timeout --); //等待R1就绪直到超时 + + if (timeout == 0) { //ACMD41无响应超时 + timeout = SD_WAIT_CMD_RESP_TIMEOUT; + do { + r1_response = sd_send_command(SD_CMD_SEND_OP_COND, 0x00, 0x00); //发送CMD1判断是否为MMC卡 + } while (r1_response != SD_R1_NO_ERROR && timeout --); + + if (timeout == 0) { //CMD1无响应超时 + error = bsp_sd_error_unknown_card_type; //卡类型未知 + goto error; + } + + card_info.card_type = bsp_sd_type_mmc; //CMD1有响应为MMC卡 + } else { + card_info.card_type = bsp_sd_type_sdv1; + } + } else if (r1_response == SD_R1_RESP_IDLE_BIT) { //CMD8有响应则卡为SD V2.0 + uint8_t r7_response[4]; + for (uint8_t i = 0; i < 4; i ++) { //继续读取R7格式回应的剩余4字节 + r7_response[i] = sd_write_read_byte(SD_DUMMY_BYTE); + } + + if (r7_response[2] == 0x01 && r7_response[3] == 0xAA) { //判断工作电压范围是否为2.7-3.6V + timeout = SD_WAIT_CMD_RESP_TIMEOUT; + do { + sd_send_command(SD_CMD_APP_CMD, 0x00, 0x00); //在发送ACMD之前都需要发送CMD55 + r1_response = sd_send_command(SD_CMD_SD_APP_OP_COND,0x40000000,0x01); //发送ACMD41尝试初始化卡 + } while(r1_response != SD_R1_NO_ERROR && timeout --); + + if(timeout == 0) { + error = bsp_sd_error_timeout; + goto error; + } + + r1_response = sd_send_command(SD_CMD_READ_OCR, 0x00, 0x00); //发送CMD58判断卡是否为HC + if(r1_response != SD_R1_NO_ERROR) { + error = bsp_sd_error_timeout; + goto error; + } + for (uint8_t i = 0; i < 4; i ++) { //继续读取R7格式回应的剩余4字节 + r7_response[i] = sd_write_read_byte(SD_DUMMY_BYTE); + } + + card_info.card_type = (r7_response[0] & 0x40) ? bsp_sd_type_sdv2hc : bsp_sd_type_sdv2; + } else { + error = bsp_sd_error_unknown_card_type; + goto error; + } + } + + sd_disable(); //开始获取SD卡Block数量 + + r1_response = sd_send_command(SD_CMD_SEND_CSD, 0x00, 0x00); //发送读取CSD命令 + if (r1_response != 0) { + error = bsp_sd_error_invalid_response; + goto error; + } + + error = sd_wait_response(0xFE); //等待读数据就绪的Token + if (error != bsp_sd_error_none) { + goto error; + } + + uint8_t csd[16]; + sd_read_bytes(csd, sizeof(csd)); //读取16字节CSD寄存器数据 + + if ((csd[0] & 0xC0) == 0x40) { //SD V2.0 + uint32_t csize = csd[9] + ((uint32_t)csd[8] << 8) + ((uint32_t)(csd[7] & 0x3F) << 16) + 1; + card_info.sector_count = csize << 10; + } else { // SD V1.0或MMC卡 + uint32_t n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2; + uint32_t csize = (csd[8] >> 6) + ((uint32_t)csd[7] << 2) + ((uint32_t)(csd[6] & 3) << 10) + 1; + card_info.sector_count = csize << (n - 9); + } + + sd_set_spi_prescaler(SD_SPI_PRESCALER_HIGH); + +error: + sd_disable(); + return error; +} + +bsp_sd_error_t bsp_sd_read_block(uint8_t* buffer, uint32_t sector_address) +{ + bsp_sd_error_t error = bsp_sd_error_none; + + if (card_info.card_type != bsp_sd_type_sdv2hc) { + sector_address <<= 9; + } + + uint8_t r1_response = sd_send_command(SD_CMD_READ_SINGLE_BLOCK, sector_address, 0x00); //发送单Block读取命令 + if (r1_response != 0) { + error = bsp_sd_error_invalid_response; + goto error; + } + + error = sd_wait_response(0xFE); //等待读数据就绪的Token + if (error != bsp_sd_error_none) { + goto error; + } + + sd_read_bytes(buffer, BSP_SD_BLOCK_SIZE); //读取单个Block的数据 + sd_write_bytes((uint8_t[]){ 0xFF, 0xFF }, 2); //跳过2字节CRC + +error: + sd_disable(); + return error; +} + +bsp_sd_error_t bsp_sd_read_multi_blocks(uint8_t* buffer, uint32_t sector_address, uint16_t sector_count) +{ + bsp_sd_error_t error = bsp_sd_error_none; + + if (card_info.card_type != bsp_sd_type_sdv2hc) { + sector_address <<= 9; + } + + if (sector_count <= 1) { + return bsp_sd_error_invalid_parameter; + } else { + uint8_t r1_response = sd_send_command(SD_CMD_READ_MULT_BLOCK, sector_address, 0x00); + if (r1_response != SD_R1_NO_ERROR) { + error = bsp_sd_error_invalid_response; + goto error; + } + + for (uint16_t i = 0; i < sector_count; i ++) { //循环读取多个Block + error = sd_wait_response(0xFE); //等待读数据就绪的Token + if (error != bsp_sd_error_none) { + goto error; + } + + sd_read_bytes(buffer, BSP_SD_BLOCK_SIZE); //读取单个Block的数据 + sd_write_bytes((uint8_t[]){ 0xFF, 0xFF }, 2); //跳过2字节CRC + + buffer += BSP_SD_BLOCK_SIZE; //准备读取下一个Block + } + + r1_response = sd_send_command(SD_CMD_STOP_TRANSMISSION, 0, 0x00); //结束单个Block的读取 + if (r1_response != SD_R1_NO_ERROR) { + error = bsp_sd_error_invalid_response; + goto error; + } + } + +error: + sd_disable(); + return error; +} + +bsp_sd_error_t bsp_sd_write_block(const uint8_t *buffer, uint32_t sector_address) +{ + bsp_sd_error_t error = bsp_sd_error_none; + + if (card_info.card_type != bsp_sd_type_sdv2hc) { + sector_address <<= 9; + } + + sd_wait_ready(); //一些较慢的卡在连续写操作前需要检查卡是否忙 + + uint8_t r1_response = sd_send_command(SD_CMD_WRITE_SINGLE_BLOCK, sector_address, 0x00); + if (r1_response != 0) { + error = bsp_sd_error_invalid_response; + goto error; + } + + sd_write_read_byte(0xFE); //发送单Block写的Token + + sd_write_bytes(buffer, BSP_SD_BLOCK_SIZE); //写入单个Block的数据 + sd_write_bytes((uint8_t[]){ 0xFF, 0xFF }, 2); //跳过2字节CRC + + uint8_t data_response = sd_write_read_byte(0xFF) & 0x1F; + if (data_response != SD_DATA_RESP_OK) { //判断卡是否成功接收数据 + error = bsp_sd_error_not_ready; + goto error; + } + + error = sd_wait_response(0xFF); //等待写入操作完成 + if (error != bsp_sd_error_none) { + goto error; + } + +error: + sd_disable(); + return error; +} + +bsp_sd_error_t bsp_sd_write_multi_blocks(const uint8_t *buffer, uint32_t sector_address, uint16_t sector_count) +{ + bsp_sd_error_t error = bsp_sd_error_none; + + if (card_info.card_type != bsp_sd_type_sdv2hc) { + sector_address <<= 9; + } + + sd_wait_ready(); //一些较慢的卡在连续写操作前需要检查卡是否忙 + + uint8_t r1_response; + if (card_info.card_type != bsp_sd_type_mmc) { //非MMC卡必须要发送CMD55与ACMD23 + sd_send_command(SD_CMD_APP_CMD, 0x00, 0x00); + + r1_response = sd_send_command(SD_CMD_SET_BLOCK_COUNT, sector_count, 0x00); + if (r1_response != SD_R1_NO_ERROR) { + error = bsp_sd_error_invalid_response; + goto error; + } + } + + r1_response = sd_send_command(SD_CMD_WRITE_MULT_BLOCK, sector_address, 0x00); + if (r1_response != SD_R1_NO_ERROR) { + error = bsp_sd_error_invalid_response; + goto error; + } + + for (uint16_t i = 0; i < sector_count; i ++) { //循环写入多个Block + sd_write_read_byte(0xFC); //发送多Block写开始的Token + + sd_write_bytes(buffer, BSP_SD_BLOCK_SIZE); + sd_write_bytes((uint8_t[]){ 0xFF, 0xFF }, 2); //跳过2字节CRC + + uint8_t data_response = sd_write_read_byte(0xFF) & 0x1F; + if (data_response != SD_DATA_RESP_OK) { //判断卡是否成功接收数据 + error = bsp_sd_error_not_ready; + goto error; + } + + error = sd_wait_response(0xFF); //等待写入操作完成 + if (error != bsp_sd_error_none) { + goto error; + } + + buffer += BSP_SD_BLOCK_SIZE; + } + + sd_write_read_byte(0xFD); //发送多Block写结束的Token + + error = sd_wait_response(0xFF); //等待写入操作完成 + if (error != bsp_sd_error_none) { + goto error; + } + +error: + sd_disable(); + return error; +} + +void bsp_sd_spi_get_card_info(bsp_card_info_t *card_info_out) +{ + memcpy(card_info_out, &card_info, sizeof(bsp_card_info_t)); +} diff --git a/stm32f103_lcds_st75256/Core/Src/diskio.c b/stm32f103_lcds_st75256/Core/Src/diskio.c new file mode 100644 index 0000000..5dc944e --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Src/diskio.c @@ -0,0 +1,128 @@ +/*-----------------------------------------------------------------------*/ +/* Low level disk I/O module SKELETON for FatFs (C)ChaN, 2019 */ +/*-----------------------------------------------------------------------*/ +/* If a working storage control module is available, it should be */ +/* attached to the FatFs via a glue function rather than modifying it. */ +/* This is an example of glue functions to attach various exsisting */ +/* storage control modules to the FatFs module with a defined API. */ +/*-----------------------------------------------------------------------*/ + +#include "ff.h" /* Obtains integer types */ +#include "diskio.h" /* Declarations of disk functions */ +#include "bsp_sd_spi.h" + +/*-----------------------------------------------------------------------*/ +/* Get Drive Status */ +/*-----------------------------------------------------------------------*/ + +DSTATUS disk_status ( + BYTE pdrv /* Physical drive nmuber to identify the drive */ +) +{ + return 0; +} + + + +/*-----------------------------------------------------------------------*/ +/* Inidialize a Drive */ +/*-----------------------------------------------------------------------*/ + +DSTATUS disk_initialize ( + BYTE pdrv /* Physical drive nmuber to identify the drive */ +) +{ + uint8_t sd_result; + + sd_result = bsp_sd_init(); + + if(sd_result == bsp_sd_error_none) { + return 0; + } + + return STA_NOINIT; +} + + + +/*-----------------------------------------------------------------------*/ +/* Read Sector(s) */ +/*-----------------------------------------------------------------------*/ + +DRESULT disk_read ( + BYTE pdrv, /* Physical drive nmuber to identify the drive */ + BYTE *buff, /* Data buffer to store read data */ + LBA_t sector, /* Start sector in LBA */ + UINT count /* Number of sectors to read */ +) +{ + bsp_sd_error_t sd_result; + + if (count > 1) { + sd_result = bsp_sd_read_multi_blocks(buff, sector, count); + } else { + sd_result = bsp_sd_read_block(buff, sector); + } + + if(sd_result == bsp_sd_error_none) { + return RES_OK; + } + + return RES_ERROR; +} + + + +/*-----------------------------------------------------------------------*/ +/* Write Sector(s) */ +/*-----------------------------------------------------------------------*/ + +#if FF_FS_READONLY == 0 + +DRESULT disk_write ( + BYTE pdrv, /* Physical drive nmuber to identify the drive */ + const BYTE *buff, /* Data to be written */ + LBA_t sector, /* Start sector in LBA */ + UINT count /* Number of sectors to write */ +) +{ + bsp_sd_error_t sd_result; + + if (count > 1) { + sd_result = bsp_sd_write_multi_blocks(buff, sector, count); + } else { + sd_result = bsp_sd_write_block(buff, sector); + } + + if(sd_result == bsp_sd_error_none) { + return RES_OK; + } + + return RES_ERROR; +} + +#endif + + +/*-----------------------------------------------------------------------*/ +/* Miscellaneous Functions */ +/*-----------------------------------------------------------------------*/ + +DRESULT disk_ioctl ( + BYTE pdrv, /* Physical drive nmuber (0..) */ + BYTE cmd, /* Control code */ + void *buff /* Buffer to send/receive control data */ +) +{ + switch(cmd) { + case CTRL_SYNC: + return RES_OK; + case GET_SECTOR_SIZE: + case GET_BLOCK_SIZE: + *(DWORD *)buff = BSP_SD_BLOCK_SIZE; + return RES_OK; + default: + return RES_PARERR; + } +} + diff --git a/stm32f103_lcds_st75256/Core/Src/ff.c b/stm32f103_lcds_st75256/Core/Src/ff.c new file mode 100644 index 0000000..6d412fa --- /dev/null +++ b/stm32f103_lcds_st75256/Core/Src/ff.c @@ -0,0 +1,7084 @@ +/*----------------------------------------------------------------------------/ +/ FatFs - Generic FAT Filesystem Module R0.15 w/patch1 / +/-----------------------------------------------------------------------------/ +/ +/ Copyright (C) 2022, ChaN, all right reserved. +/ +/ FatFs module is an open source software. Redistribution and use of FatFs in +/ source and binary forms, with or without modification, are permitted provided +/ that the following condition is met: +/ +/ 1. Redistributions of source code must retain the above copyright notice, +/ this condition and the following disclaimer. +/ +/ This software is provided by the copyright holder and contributors "AS IS" +/ and any warranties related to this software are DISCLAIMED. +/ The copyright owner or contributors be NOT LIABLE for any damages caused +/ by use of this software. +/ +/----------------------------------------------------------------------------*/ + + +#include +#include "ff.h" /* Declarations of FatFs API */ +#include "diskio.h" /* Declarations of device I/O functions */ + + +/*-------------------------------------------------------------------------- + + Module Private Definitions + +---------------------------------------------------------------------------*/ + +#if FF_DEFINED != 80286 /* Revision ID */ +#error Wrong include file (ff.h). +#endif + + +/* Limits and boundaries */ +#define MAX_DIR 0x200000 /* Max size of FAT directory */ +#define MAX_DIR_EX 0x10000000 /* Max size of exFAT directory */ +#define MAX_FAT12 0xFF5 /* Max FAT12 clusters (differs from specs, but right for real DOS/Windows behavior) */ +#define MAX_FAT16 0xFFF5 /* Max FAT16 clusters (differs from specs, but right for real DOS/Windows behavior) */ +#define MAX_FAT32 0x0FFFFFF5 /* Max FAT32 clusters (not specified, practical limit) */ +#define MAX_EXFAT 0x7FFFFFFD /* Max exFAT clusters (differs from specs, implementation limit) */ + + +/* Character code support macros */ +#define IsUpper(c) ((c) >= 'A' && (c) <= 'Z') +#define IsLower(c) ((c) >= 'a' && (c) <= 'z') +#define IsDigit(c) ((c) >= '0' && (c) <= '9') +#define IsSeparator(c) ((c) == '/' || (c) == '\\') +#define IsTerminator(c) ((UINT)(c) < (FF_USE_LFN ? ' ' : '!')) +#define IsSurrogate(c) ((c) >= 0xD800 && (c) <= 0xDFFF) +#define IsSurrogateH(c) ((c) >= 0xD800 && (c) <= 0xDBFF) +#define IsSurrogateL(c) ((c) >= 0xDC00 && (c) <= 0xDFFF) + + +/* Additional file access control and file status flags for internal use */ +#define FA_SEEKEND 0x20 /* Seek to end of the file on file open */ +#define FA_MODIFIED 0x40 /* File has been modified */ +#define FA_DIRTY 0x80 /* FIL.buf[] needs to be written-back */ + + +/* Additional file attribute bits for internal use */ +#define AM_VOL 0x08 /* Volume label */ +#define AM_LFN 0x0F /* LFN entry */ +#define AM_MASK 0x3F /* Mask of defined bits in FAT */ +#define AM_MASKX 0x37 /* Mask of defined bits in exFAT */ + + +/* Name status flags in fn[11] */ +#define NSFLAG 11 /* Index of the name status byte */ +#define NS_LOSS 0x01 /* Out of 8.3 format */ +#define NS_LFN 0x02 /* Force to create LFN entry */ +#define NS_LAST 0x04 /* Last segment */ +#define NS_BODY 0x08 /* Lower case flag (body) */ +#define NS_EXT 0x10 /* Lower case flag (ext) */ +#define NS_DOT 0x20 /* Dot entry */ +#define NS_NOLFN 0x40 /* Do not find LFN */ +#define NS_NONAME 0x80 /* Not followed */ + + +/* exFAT directory entry types */ +#define ET_BITMAP 0x81 /* Allocation bitmap */ +#define ET_UPCASE 0x82 /* Up-case table */ +#define ET_VLABEL 0x83 /* Volume label */ +#define ET_FILEDIR 0x85 /* File and directory */ +#define ET_STREAM 0xC0 /* Stream extension */ +#define ET_FILENAME 0xC1 /* Name extension */ + + +/* FatFs refers the FAT structure as simple byte array instead of structure member +/ because the C structure is not binary compatible between different platforms */ + +#define BS_JmpBoot 0 /* x86 jump instruction (3-byte) */ +#define BS_OEMName 3 /* OEM name (8-byte) */ +#define BPB_BytsPerSec 11 /* Sector size [byte] (WORD) */ +#define BPB_SecPerClus 13 /* Cluster size [sector] (BYTE) */ +#define BPB_RsvdSecCnt 14 /* Size of reserved area [sector] (WORD) */ +#define BPB_NumFATs 16 /* Number of FATs (BYTE) */ +#define BPB_RootEntCnt 17 /* Size of root directory area for FAT [entry] (WORD) */ +#define BPB_TotSec16 19 /* Volume size (16-bit) [sector] (WORD) */ +#define BPB_Media 21 /* Media descriptor byte (BYTE) */ +#define BPB_FATSz16 22 /* FAT size (16-bit) [sector] (WORD) */ +#define BPB_SecPerTrk 24 /* Number of sectors per track for int13h [sector] (WORD) */ +#define BPB_NumHeads 26 /* Number of heads for int13h (WORD) */ +#define BPB_HiddSec 28 /* Volume offset from top of the drive (DWORD) */ +#define BPB_TotSec32 32 /* Volume size (32-bit) [sector] (DWORD) */ +#define BS_DrvNum 36 /* Physical drive number for int13h (BYTE) */ +#define BS_NTres 37 /* WindowsNT error flag (BYTE) */ +#define BS_BootSig 38 /* Extended boot signature (BYTE) */ +#define BS_VolID 39 /* Volume serial number (DWORD) */ +#define BS_VolLab 43 /* Volume label string (8-byte) */ +#define BS_FilSysType 54 /* Filesystem type string (8-byte) */ +#define BS_BootCode 62 /* Boot code (448-byte) */ +#define BS_55AA 510 /* Signature word (WORD) */ + +#define BPB_FATSz32 36 /* FAT32: FAT size [sector] (DWORD) */ +#define BPB_ExtFlags32 40 /* FAT32: Extended flags (WORD) */ +#define BPB_FSVer32 42 /* FAT32: Filesystem version (WORD) */ +#define BPB_RootClus32 44 /* FAT32: Root directory cluster (DWORD) */ +#define BPB_FSInfo32 48 /* FAT32: Offset of FSINFO sector (WORD) */ +#define BPB_BkBootSec32 50 /* FAT32: Offset of backup boot sector (WORD) */ +#define BS_DrvNum32 64 /* FAT32: Physical drive number for int13h (BYTE) */ +#define BS_NTres32 65 /* FAT32: Error flag (BYTE) */ +#define BS_BootSig32 66 /* FAT32: Extended boot signature (BYTE) */ +#define BS_VolID32 67 /* FAT32: Volume serial number (DWORD) */ +#define BS_VolLab32 71 /* FAT32: Volume label string (8-byte) */ +#define BS_FilSysType32 82 /* FAT32: Filesystem type string (8-byte) */ +#define BS_BootCode32 90 /* FAT32: Boot code (420-byte) */ + +#define BPB_ZeroedEx 11 /* exFAT: MBZ field (53-byte) */ +#define BPB_VolOfsEx 64 /* exFAT: Volume offset from top of the drive [sector] (QWORD) */ +#define BPB_TotSecEx 72 /* exFAT: Volume size [sector] (QWORD) */ +#define BPB_FatOfsEx 80 /* exFAT: FAT offset from top of the volume [sector] (DWORD) */ +#define BPB_FatSzEx 84 /* exFAT: FAT size [sector] (DWORD) */ +#define BPB_DataOfsEx 88 /* exFAT: Data offset from top of the volume [sector] (DWORD) */ +#define BPB_NumClusEx 92 /* exFAT: Number of clusters (DWORD) */ +#define BPB_RootClusEx 96 /* exFAT: Root directory start cluster (DWORD) */ +#define BPB_VolIDEx 100 /* exFAT: Volume serial number (DWORD) */ +#define BPB_FSVerEx 104 /* exFAT: Filesystem version (WORD) */ +#define BPB_VolFlagEx 106 /* exFAT: Volume flags (WORD) */ +#define BPB_BytsPerSecEx 108 /* exFAT: Log2 of sector size in unit of byte (BYTE) */ +#define BPB_SecPerClusEx 109 /* exFAT: Log2 of cluster size in unit of sector (BYTE) */ +#define BPB_NumFATsEx 110 /* exFAT: Number of FATs (BYTE) */ +#define BPB_DrvNumEx 111 /* exFAT: Physical drive number for int13h (BYTE) */ +#define BPB_PercInUseEx 112 /* exFAT: Percent in use (BYTE) */ +#define BPB_RsvdEx 113 /* exFAT: Reserved (7-byte) */ +#define BS_BootCodeEx 120 /* exFAT: Boot code (390-byte) */ + +#define DIR_Name 0 /* Short file name (11-byte) */ +#define DIR_Attr 11 /* Attribute (BYTE) */ +#define DIR_NTres 12 /* Lower case flag (BYTE) */ +#define DIR_CrtTime10 13 /* Created time sub-second (BYTE) */ +#define DIR_CrtTime 14 /* Created time (DWORD) */ +#define DIR_LstAccDate 18 /* Last accessed date (WORD) */ +#define DIR_FstClusHI 20 /* Higher 16-bit of first cluster (WORD) */ +#define DIR_ModTime 22 /* Modified time (DWORD) */ +#define DIR_FstClusLO 26 /* Lower 16-bit of first cluster (WORD) */ +#define DIR_FileSize 28 /* File size (DWORD) */ +#define LDIR_Ord 0 /* LFN: LFN order and LLE flag (BYTE) */ +#define LDIR_Attr 11 /* LFN: LFN attribute (BYTE) */ +#define LDIR_Type 12 /* LFN: Entry type (BYTE) */ +#define LDIR_Chksum 13 /* LFN: Checksum of the SFN (BYTE) */ +#define LDIR_FstClusLO 26 /* LFN: MBZ field (WORD) */ +#define XDIR_Type 0 /* exFAT: Type of exFAT directory entry (BYTE) */ +#define XDIR_NumLabel 1 /* exFAT: Number of volume label characters (BYTE) */ +#define XDIR_Label 2 /* exFAT: Volume label (11-WORD) */ +#define XDIR_CaseSum 4 /* exFAT: Sum of case conversion table (DWORD) */ +#define XDIR_NumSec 1 /* exFAT: Number of secondary entries (BYTE) */ +#define XDIR_SetSum 2 /* exFAT: Sum of the set of directory entries (WORD) */ +#define XDIR_Attr 4 /* exFAT: File attribute (WORD) */ +#define XDIR_CrtTime 8 /* exFAT: Created time (DWORD) */ +#define XDIR_ModTime 12 /* exFAT: Modified time (DWORD) */ +#define XDIR_AccTime 16 /* exFAT: Last accessed time (DWORD) */ +#define XDIR_CrtTime10 20 /* exFAT: Created time subsecond (BYTE) */ +#define XDIR_ModTime10 21 /* exFAT: Modified time subsecond (BYTE) */ +#define XDIR_CrtTZ 22 /* exFAT: Created timezone (BYTE) */ +#define XDIR_ModTZ 23 /* exFAT: Modified timezone (BYTE) */ +#define XDIR_AccTZ 24 /* exFAT: Last accessed timezone (BYTE) */ +#define XDIR_GenFlags 33 /* exFAT: General secondary flags (BYTE) */ +#define XDIR_NumName 35 /* exFAT: Number of file name characters (BYTE) */ +#define XDIR_NameHash 36 /* exFAT: Hash of file name (WORD) */ +#define XDIR_ValidFileSize 40 /* exFAT: Valid file size (QWORD) */ +#define XDIR_FstClus 52 /* exFAT: First cluster of the file data (DWORD) */ +#define XDIR_FileSize 56 /* exFAT: File/Directory size (QWORD) */ + +#define SZDIRE 32 /* Size of a directory entry */ +#define DDEM 0xE5 /* Deleted directory entry mark set to DIR_Name[0] */ +#define RDDEM 0x05 /* Replacement of the character collides with DDEM */ +#define LLEF 0x40 /* Last long entry flag in LDIR_Ord */ + +#define FSI_LeadSig 0 /* FAT32 FSI: Leading signature (DWORD) */ +#define FSI_StrucSig 484 /* FAT32 FSI: Structure signature (DWORD) */ +#define FSI_Free_Count 488 /* FAT32 FSI: Number of free clusters (DWORD) */ +#define FSI_Nxt_Free 492 /* FAT32 FSI: Last allocated cluster (DWORD) */ + +#define MBR_Table 446 /* MBR: Offset of partition table in the MBR */ +#define SZ_PTE 16 /* MBR: Size of a partition table entry */ +#define PTE_Boot 0 /* MBR PTE: Boot indicator */ +#define PTE_StHead 1 /* MBR PTE: Start head */ +#define PTE_StSec 2 /* MBR PTE: Start sector */ +#define PTE_StCyl 3 /* MBR PTE: Start cylinder */ +#define PTE_System 4 /* MBR PTE: System ID */ +#define PTE_EdHead 5 /* MBR PTE: End head */ +#define PTE_EdSec 6 /* MBR PTE: End sector */ +#define PTE_EdCyl 7 /* MBR PTE: End cylinder */ +#define PTE_StLba 8 /* MBR PTE: Start in LBA */ +#define PTE_SizLba 12 /* MBR PTE: Size in LBA */ + +#define GPTH_Sign 0 /* GPT HDR: Signature (8-byte) */ +#define GPTH_Rev 8 /* GPT HDR: Revision (DWORD) */ +#define GPTH_Size 12 /* GPT HDR: Header size (DWORD) */ +#define GPTH_Bcc 16 /* GPT HDR: Header BCC (DWORD) */ +#define GPTH_CurLba 24 /* GPT HDR: This header LBA (QWORD) */ +#define GPTH_BakLba 32 /* GPT HDR: Another header LBA (QWORD) */ +#define GPTH_FstLba 40 /* GPT HDR: First LBA for partition data (QWORD) */ +#define GPTH_LstLba 48 /* GPT HDR: Last LBA for partition data (QWORD) */ +#define GPTH_DskGuid 56 /* GPT HDR: Disk GUID (16-byte) */ +#define GPTH_PtOfs 72 /* GPT HDR: Partition table LBA (QWORD) */ +#define GPTH_PtNum 80 /* GPT HDR: Number of table entries (DWORD) */ +#define GPTH_PteSize 84 /* GPT HDR: Size of table entry (DWORD) */ +#define GPTH_PtBcc 88 /* GPT HDR: Partition table BCC (DWORD) */ +#define SZ_GPTE 128 /* GPT PTE: Size of partition table entry */ +#define GPTE_PtGuid 0 /* GPT PTE: Partition type GUID (16-byte) */ +#define GPTE_UpGuid 16 /* GPT PTE: Partition unique GUID (16-byte) */ +#define GPTE_FstLba 32 /* GPT PTE: First LBA of partition (QWORD) */ +#define GPTE_LstLba 40 /* GPT PTE: Last LBA of partition (QWORD) */ +#define GPTE_Flags 48 /* GPT PTE: Partition flags (QWORD) */ +#define GPTE_Name 56 /* GPT PTE: Partition name */ + + +/* Post process on fatal error in the file operations */ +#define ABORT(fs, res) { fp->err = (BYTE)(res); LEAVE_FF(fs, res); } + + +/* Re-entrancy related */ +#if FF_FS_REENTRANT +#if FF_USE_LFN == 1 +#error Static LFN work area cannot be used in thread-safe configuration +#endif +#define LEAVE_FF(fs, res) { unlock_volume(fs, res); return res; } +#else +#define LEAVE_FF(fs, res) return res +#endif + + +/* Definitions of logical drive - physical location conversion */ +#if FF_MULTI_PARTITION +#define LD2PD(vol) VolToPart[vol].pd /* Get physical drive number */ +#define LD2PT(vol) VolToPart[vol].pt /* Get partition number (0:auto search, 1..:forced partition number) */ +#else +#define LD2PD(vol) (BYTE)(vol) /* Each logical drive is associated with the same physical drive number */ +#define LD2PT(vol) 0 /* Auto partition search */ +#endif + + +/* Definitions of sector size */ +#if (FF_MAX_SS < FF_MIN_SS) || (FF_MAX_SS != 512 && FF_MAX_SS != 1024 && FF_MAX_SS != 2048 && FF_MAX_SS != 4096) || (FF_MIN_SS != 512 && FF_MIN_SS != 1024 && FF_MIN_SS != 2048 && FF_MIN_SS != 4096) +#error Wrong sector size configuration +#endif +#if FF_MAX_SS == FF_MIN_SS +#define SS(fs) ((UINT)FF_MAX_SS) /* Fixed sector size */ +#else +#define SS(fs) ((fs)->ssize) /* Variable sector size */ +#endif + + +/* Timestamp */ +#if FF_FS_NORTC == 1 +#if FF_NORTC_YEAR < 1980 || FF_NORTC_YEAR > 2107 || FF_NORTC_MON < 1 || FF_NORTC_MON > 12 || FF_NORTC_MDAY < 1 || FF_NORTC_MDAY > 31 +#error Invalid FF_FS_NORTC settings +#endif +#define GET_FATTIME() ((DWORD)(FF_NORTC_YEAR - 1980) << 25 | (DWORD)FF_NORTC_MON << 21 | (DWORD)FF_NORTC_MDAY << 16) +#else +#define GET_FATTIME() get_fattime() +#endif + + +/* File lock controls */ +#if FF_FS_LOCK +#if FF_FS_READONLY +#error FF_FS_LOCK must be 0 at read-only configuration +#endif +typedef struct { + FATFS* fs; /* Object ID 1, volume (NULL:blank entry) */ + DWORD clu; /* Object ID 2, containing directory (0:root) */ + DWORD ofs; /* Object ID 3, offset in the directory */ + UINT ctr; /* Object open counter, 0:none, 0x01..0xFF:read mode open count, 0x100:write mode */ +} FILESEM; +#endif + + +/* SBCS up-case tables (\x80-\xFF) */ +#define TBL_CT437 {0x80,0x9A,0x45,0x41,0x8E,0x41,0x8F,0x80,0x45,0x45,0x45,0x49,0x49,0x49,0x8E,0x8F, \ + 0x90,0x92,0x92,0x4F,0x99,0x4F,0x55,0x55,0x59,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x41,0x49,0x4F,0x55,0xA5,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT720 {0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT737 {0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0x90,0x92,0x92,0x93,0x94,0x95,0x96,0x97,0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87, \ + 0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F,0x90,0x91,0xAA,0x92,0x93,0x94,0x95,0x96, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0x97,0xEA,0xEB,0xEC,0xE4,0xED,0xEE,0xEF,0xF5,0xF0,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT771 {0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDC,0xDE,0xDE, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0xF0,0xF0,0xF2,0xF2,0xF4,0xF4,0xF6,0xF6,0xF8,0xF8,0xFA,0xFA,0xFC,0xFC,0xFE,0xFF} +#define TBL_CT775 {0x80,0x9A,0x91,0xA0,0x8E,0x95,0x8F,0x80,0xAD,0xED,0x8A,0x8A,0xA1,0x8D,0x8E,0x8F, \ + 0x90,0x92,0x92,0xE2,0x99,0x95,0x96,0x97,0x97,0x99,0x9A,0x9D,0x9C,0x9D,0x9E,0x9F, \ + 0xA0,0xA1,0xE0,0xA3,0xA3,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xB5,0xB6,0xB7,0xB8,0xBD,0xBE,0xC6,0xC7,0xA5,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE5,0xE5,0xE6,0xE3,0xE8,0xE8,0xEA,0xEA,0xEE,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT850 {0x43,0x55,0x45,0x41,0x41,0x41,0x41,0x43,0x45,0x45,0x45,0x49,0x49,0x49,0x41,0x41, \ + 0x45,0x92,0x92,0x4F,0x4F,0x4F,0x55,0x55,0x59,0x4F,0x55,0x4F,0x9C,0x4F,0x9E,0x9F, \ + 0x41,0x49,0x4F,0x55,0xA5,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0x41,0x41,0x41,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0x41,0x41,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD1,0xD1,0x45,0x45,0x45,0x49,0x49,0x49,0x49,0xD9,0xDA,0xDB,0xDC,0xDD,0x49,0xDF, \ + 0x4F,0xE1,0x4F,0x4F,0x4F,0x4F,0xE6,0xE8,0xE8,0x55,0x55,0x55,0x59,0x59,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT852 {0x80,0x9A,0x90,0xB6,0x8E,0xDE,0x8F,0x80,0x9D,0xD3,0x8A,0x8A,0xD7,0x8D,0x8E,0x8F, \ + 0x90,0x91,0x91,0xE2,0x99,0x95,0x95,0x97,0x97,0x99,0x9A,0x9B,0x9B,0x9D,0x9E,0xAC, \ + 0xB5,0xD6,0xE0,0xE9,0xA4,0xA4,0xA6,0xA6,0xA8,0xA8,0xAA,0x8D,0xAC,0xB8,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBD,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC6,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD1,0xD1,0xD2,0xD3,0xD2,0xD5,0xD6,0xD7,0xB7,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE3,0xD5,0xE6,0xE6,0xE8,0xE9,0xE8,0xEB,0xED,0xED,0xDD,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xEB,0xFC,0xFC,0xFE,0xFF} +#define TBL_CT855 {0x81,0x81,0x83,0x83,0x85,0x85,0x87,0x87,0x89,0x89,0x8B,0x8B,0x8D,0x8D,0x8F,0x8F, \ + 0x91,0x91,0x93,0x93,0x95,0x95,0x97,0x97,0x99,0x99,0x9B,0x9B,0x9D,0x9D,0x9F,0x9F, \ + 0xA1,0xA1,0xA3,0xA3,0xA5,0xA5,0xA7,0xA7,0xA9,0xA9,0xAB,0xAB,0xAD,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB6,0xB6,0xB8,0xB8,0xB9,0xBA,0xBB,0xBC,0xBE,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC7,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD1,0xD1,0xD3,0xD3,0xD5,0xD5,0xD7,0xD7,0xDD,0xD9,0xDA,0xDB,0xDC,0xDD,0xE0,0xDF, \ + 0xE0,0xE2,0xE2,0xE4,0xE4,0xE6,0xE6,0xE8,0xE8,0xEA,0xEA,0xEC,0xEC,0xEE,0xEE,0xEF, \ + 0xF0,0xF2,0xF2,0xF4,0xF4,0xF6,0xF6,0xF8,0xF8,0xFA,0xFA,0xFC,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT857 {0x80,0x9A,0x90,0xB6,0x8E,0xB7,0x8F,0x80,0xD2,0xD3,0xD4,0xD8,0xD7,0x49,0x8E,0x8F, \ + 0x90,0x92,0x92,0xE2,0x99,0xE3,0xEA,0xEB,0x98,0x99,0x9A,0x9D,0x9C,0x9D,0x9E,0x9E, \ + 0xB5,0xD6,0xE0,0xE9,0xA5,0xA5,0xA6,0xA6,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC7,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0x49,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE5,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xDE,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT860 {0x80,0x9A,0x90,0x8F,0x8E,0x91,0x86,0x80,0x89,0x89,0x92,0x8B,0x8C,0x98,0x8E,0x8F, \ + 0x90,0x91,0x92,0x8C,0x99,0xA9,0x96,0x9D,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x86,0x8B,0x9F,0x96,0xA5,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT861 {0x80,0x9A,0x90,0x41,0x8E,0x41,0x8F,0x80,0x45,0x45,0x45,0x8B,0x8B,0x8D,0x8E,0x8F, \ + 0x90,0x92,0x92,0x4F,0x99,0x8D,0x55,0x97,0x97,0x99,0x9A,0x9D,0x9C,0x9D,0x9E,0x9F, \ + 0xA4,0xA5,0xA6,0xA7,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT862 {0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x41,0x49,0x4F,0x55,0xA5,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT863 {0x43,0x55,0x45,0x41,0x41,0x41,0x86,0x43,0x45,0x45,0x45,0x49,0x49,0x8D,0x41,0x8F, \ + 0x45,0x45,0x45,0x4F,0x45,0x49,0x55,0x55,0x98,0x4F,0x55,0x9B,0x9C,0x55,0x55,0x9F, \ + 0xA0,0xA1,0x4F,0x55,0xA4,0xA5,0xA6,0xA7,0x49,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT864 {0x80,0x9A,0x45,0x41,0x8E,0x41,0x8F,0x80,0x45,0x45,0x45,0x49,0x49,0x49,0x8E,0x8F, \ + 0x90,0x92,0x92,0x4F,0x99,0x4F,0x55,0x55,0x59,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x41,0x49,0x4F,0x55,0xA5,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT865 {0x80,0x9A,0x90,0x41,0x8E,0x41,0x8F,0x80,0x45,0x45,0x45,0x49,0x49,0x49,0x8E,0x8F, \ + 0x90,0x92,0x92,0x4F,0x99,0x4F,0x55,0x55,0x59,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x41,0x49,0x4F,0x55,0xA5,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0xE0,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xEB,0xEC,0xED,0xEE,0xEF, \ + 0xF0,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT866 {0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,0xDA,0xDB,0xDC,0xDD,0xDE,0xDF, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x9B,0x9C,0x9D,0x9E,0x9F, \ + 0xF0,0xF0,0xF2,0xF2,0xF4,0xF4,0xF6,0xF6,0xF8,0xF9,0xFA,0xFB,0xFC,0xFD,0xFE,0xFF} +#define TBL_CT869 {0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x8B,0x8C,0x8D,0x8E,0x8F, \ + 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9A,0x86,0x9C,0x8D,0x8F,0x90, \ + 0x91,0x90,0x92,0x95,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xAB,0xAC,0xAD,0xAE,0xAF, \ + 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,0xBA,0xBB,0xBC,0xBD,0xBE,0xBF, \ + 0xC0,0xC1,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xCB,0xCC,0xCD,0xCE,0xCF, \ + 0xD0,0xD1,0xD2,0xD3,0xD4,0xD5,0xA4,0xA5,0xA6,0xD9,0xDA,0xDB,0xDC,0xA7,0xA8,0xDF, \ + 0xA9,0xAA,0xAC,0xAD,0xB5,0xB6,0xB7,0xB8,0xBD,0xBE,0xC6,0xC7,0xCF,0xCF,0xD0,0xEF, \ + 0xF0,0xF1,0xD1,0xD2,0xD3,0xF5,0xD4,0xF7,0xF8,0xF9,0xD5,0x96,0x95,0x98,0xFE,0xFF} + + +/* DBCS code range |----- 1st byte -----| |----------- 2nd byte -----------| */ +/* <------> <------> <------> <------> <------> */ +#define TBL_DC932 {0x81, 0x9F, 0xE0, 0xFC, 0x40, 0x7E, 0x80, 0xFC, 0x00, 0x00} +#define TBL_DC936 {0x81, 0xFE, 0x00, 0x00, 0x40, 0x7E, 0x80, 0xFE, 0x00, 0x00} +#define TBL_DC949 {0x81, 0xFE, 0x00, 0x00, 0x41, 0x5A, 0x61, 0x7A, 0x81, 0xFE} +#define TBL_DC950 {0x81, 0xFE, 0x00, 0x00, 0x40, 0x7E, 0xA1, 0xFE, 0x00, 0x00} + + +/* Macros for table definitions */ +#define MERGE_2STR(a, b) a ## b +#define MKCVTBL(hd, cp) MERGE_2STR(hd, cp) + + + + +/*-------------------------------------------------------------------------- + + Module Private Work Area + +---------------------------------------------------------------------------*/ +/* Remark: Variables defined here without initial value shall be guaranteed +/ zero/null at start-up. If not, the linker option or start-up routine is +/ not compliance with C standard. */ + +/*--------------------------------*/ +/* File/Volume controls */ +/*--------------------------------*/ + +#if FF_VOLUMES < 1 || FF_VOLUMES > 10 +#error Wrong FF_VOLUMES setting +#endif +static FATFS *FatFs[FF_VOLUMES]; /* Pointer to the filesystem objects (logical drives) */ +static WORD Fsid; /* Filesystem mount ID */ + +#if FF_FS_RPATH != 0 +static BYTE CurrVol; /* Current drive set by f_chdrive() */ +#endif + +#if FF_FS_LOCK != 0 +static FILESEM Files[FF_FS_LOCK]; /* Open object lock semaphores */ +#if FF_FS_REENTRANT +static BYTE SysLock; /* System lock flag (0:no mutex, 1:unlocked, 2:locked) */ +#endif +#endif + +#if FF_STR_VOLUME_ID +#ifdef FF_VOLUME_STRS +static const char *const VolumeStr[FF_VOLUMES] = {FF_VOLUME_STRS}; /* Pre-defined volume ID */ +#endif +#endif + +#if FF_LBA64 +#if FF_MIN_GPT > 0x100000000 +#error Wrong FF_MIN_GPT setting +#endif +static const BYTE GUID_MS_Basic[16] = {0xA2,0xA0,0xD0,0xEB,0xE5,0xB9,0x33,0x44,0x87,0xC0,0x68,0xB6,0xB7,0x26,0x99,0xC7}; +#endif + + + +/*--------------------------------*/ +/* LFN/Directory working buffer */ +/*--------------------------------*/ + +#if FF_USE_LFN == 0 /* Non-LFN configuration */ +#if FF_FS_EXFAT +#error LFN must be enabled when enable exFAT +#endif +#define DEF_NAMBUF +#define INIT_NAMBUF(fs) +#define FREE_NAMBUF() +#define LEAVE_MKFS(res) return res + +#else /* LFN configurations */ +#if FF_MAX_LFN < 12 || FF_MAX_LFN > 255 +#error Wrong setting of FF_MAX_LFN +#endif +#if FF_LFN_BUF < FF_SFN_BUF || FF_SFN_BUF < 12 +#error Wrong setting of FF_LFN_BUF or FF_SFN_BUF +#endif +#if FF_LFN_UNICODE < 0 || FF_LFN_UNICODE > 3 +#error Wrong setting of FF_LFN_UNICODE +#endif +static const BYTE LfnOfs[] = {1,3,5,7,9,14,16,18,20,22,24,28,30}; /* FAT: Offset of LFN characters in the directory entry */ +#define MAXDIRB(nc) ((nc + 44U) / 15 * SZDIRE) /* exFAT: Size of directory entry block scratchpad buffer needed for the name length */ + +#if FF_USE_LFN == 1 /* LFN enabled with static working buffer */ +#if FF_FS_EXFAT +static BYTE DirBuf[MAXDIRB(FF_MAX_LFN)]; /* Directory entry block scratchpad buffer */ +#endif +static WCHAR LfnBuf[FF_MAX_LFN + 1]; /* LFN working buffer */ +#define DEF_NAMBUF +#define INIT_NAMBUF(fs) +#define FREE_NAMBUF() +#define LEAVE_MKFS(res) return res + +#elif FF_USE_LFN == 2 /* LFN enabled with dynamic working buffer on the stack */ +#if FF_FS_EXFAT +#define DEF_NAMBUF WCHAR lbuf[FF_MAX_LFN+1]; BYTE dbuf[MAXDIRB(FF_MAX_LFN)]; /* LFN working buffer and directory entry block scratchpad buffer */ +#define INIT_NAMBUF(fs) { (fs)->lfnbuf = lbuf; (fs)->dirbuf = dbuf; } +#define FREE_NAMBUF() +#else +#define DEF_NAMBUF WCHAR lbuf[FF_MAX_LFN+1]; /* LFN working buffer */ +#define INIT_NAMBUF(fs) { (fs)->lfnbuf = lbuf; } +#define FREE_NAMBUF() +#endif +#define LEAVE_MKFS(res) return res + +#elif FF_USE_LFN == 3 /* LFN enabled with dynamic working buffer on the heap */ +#if FF_FS_EXFAT +#define DEF_NAMBUF WCHAR *lfn; /* Pointer to LFN working buffer and directory entry block scratchpad buffer */ +#define INIT_NAMBUF(fs) { lfn = ff_memalloc((FF_MAX_LFN+1)*2 + MAXDIRB(FF_MAX_LFN)); if (!lfn) LEAVE_FF(fs, FR_NOT_ENOUGH_CORE); (fs)->lfnbuf = lfn; (fs)->dirbuf = (BYTE*)(lfn+FF_MAX_LFN+1); } +#define FREE_NAMBUF() ff_memfree(lfn) +#else +#define DEF_NAMBUF WCHAR *lfn; /* Pointer to LFN working buffer */ +#define INIT_NAMBUF(fs) { lfn = ff_memalloc((FF_MAX_LFN+1)*2); if (!lfn) LEAVE_FF(fs, FR_NOT_ENOUGH_CORE); (fs)->lfnbuf = lfn; } +#define FREE_NAMBUF() ff_memfree(lfn) +#endif +#define LEAVE_MKFS(res) { if (!work) ff_memfree(buf); return res; } +#define MAX_MALLOC 0x8000 /* Must be >=FF_MAX_SS */ + +#else +#error Wrong setting of FF_USE_LFN + +#endif /* FF_USE_LFN == 1 */ +#endif /* FF_USE_LFN == 0 */ + + + +/*--------------------------------*/ +/* Code conversion tables */ +/*--------------------------------*/ + +#if FF_CODE_PAGE == 0 /* Run-time code page configuration */ +#define CODEPAGE CodePage +static WORD CodePage; /* Current code page */ +static const BYTE* ExCvt; /* Ptr to SBCS up-case table Ct???[] (null:not used) */ +static const BYTE* DbcTbl; /* Ptr to DBCS code range table Dc???[] (null:not used) */ + +static const BYTE Ct437[] = TBL_CT437; +static const BYTE Ct720[] = TBL_CT720; +static const BYTE Ct737[] = TBL_CT737; +static const BYTE Ct771[] = TBL_CT771; +static const BYTE Ct775[] = TBL_CT775; +static const BYTE Ct850[] = TBL_CT850; +static const BYTE Ct852[] = TBL_CT852; +static const BYTE Ct855[] = TBL_CT855; +static const BYTE Ct857[] = TBL_CT857; +static const BYTE Ct860[] = TBL_CT860; +static const BYTE Ct861[] = TBL_CT861; +static const BYTE Ct862[] = TBL_CT862; +static const BYTE Ct863[] = TBL_CT863; +static const BYTE Ct864[] = TBL_CT864; +static const BYTE Ct865[] = TBL_CT865; +static const BYTE Ct866[] = TBL_CT866; +static const BYTE Ct869[] = TBL_CT869; +static const BYTE Dc932[] = TBL_DC932; +static const BYTE Dc936[] = TBL_DC936; +static const BYTE Dc949[] = TBL_DC949; +static const BYTE Dc950[] = TBL_DC950; + +#elif FF_CODE_PAGE < 900 /* Static code page configuration (SBCS) */ +#define CODEPAGE FF_CODE_PAGE +static const BYTE ExCvt[] = MKCVTBL(TBL_CT, FF_CODE_PAGE); + +#else /* Static code page configuration (DBCS) */ +#define CODEPAGE FF_CODE_PAGE +static const BYTE DbcTbl[] = MKCVTBL(TBL_DC, FF_CODE_PAGE); + +#endif + + + + +/*-------------------------------------------------------------------------- + + Module Private Functions + +---------------------------------------------------------------------------*/ + + +/*-----------------------------------------------------------------------*/ +/* Load/Store multi-byte word in the FAT structure */ +/*-----------------------------------------------------------------------*/ + +static WORD ld_word (const BYTE* ptr) /* Load a 2-byte little-endian word */ +{ + WORD rv; + + rv = ptr[1]; + rv = rv << 8 | ptr[0]; + return rv; +} + +static DWORD ld_dword (const BYTE* ptr) /* Load a 4-byte little-endian word */ +{ + DWORD rv; + + rv = ptr[3]; + rv = rv << 8 | ptr[2]; + rv = rv << 8 | ptr[1]; + rv = rv << 8 | ptr[0]; + return rv; +} + +#if FF_FS_EXFAT +static QWORD ld_qword (const BYTE* ptr) /* Load an 8-byte little-endian word */ +{ + QWORD rv; + + rv = ptr[7]; + rv = rv << 8 | ptr[6]; + rv = rv << 8 | ptr[5]; + rv = rv << 8 | ptr[4]; + rv = rv << 8 | ptr[3]; + rv = rv << 8 | ptr[2]; + rv = rv << 8 | ptr[1]; + rv = rv << 8 | ptr[0]; + return rv; +} +#endif + +#if !FF_FS_READONLY +static void st_word (BYTE* ptr, WORD val) /* Store a 2-byte word in little-endian */ +{ + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; +} + +static void st_dword (BYTE* ptr, DWORD val) /* Store a 4-byte word in little-endian */ +{ + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; +} + +#if FF_FS_EXFAT +static void st_qword (BYTE* ptr, QWORD val) /* Store an 8-byte word in little-endian */ +{ + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; val >>= 8; + *ptr++ = (BYTE)val; +} +#endif +#endif /* !FF_FS_READONLY */ + + + +/*-----------------------------------------------------------------------*/ +/* String functions */ +/*-----------------------------------------------------------------------*/ + +/* Test if the byte is DBC 1st byte */ +static int dbc_1st (BYTE c) +{ +#if FF_CODE_PAGE == 0 /* Variable code page */ + if (DbcTbl && c >= DbcTbl[0]) { + if (c <= DbcTbl[1]) return 1; /* 1st byte range 1 */ + if (c >= DbcTbl[2] && c <= DbcTbl[3]) return 1; /* 1st byte range 2 */ + } +#elif FF_CODE_PAGE >= 900 /* DBCS fixed code page */ + if (c >= DbcTbl[0]) { + if (c <= DbcTbl[1]) return 1; + if (c >= DbcTbl[2] && c <= DbcTbl[3]) return 1; + } +#else /* SBCS fixed code page */ + if (c != 0) return 0; /* Always false */ +#endif + return 0; +} + + +/* Test if the byte is DBC 2nd byte */ +static int dbc_2nd (BYTE c) +{ +#if FF_CODE_PAGE == 0 /* Variable code page */ + if (DbcTbl && c >= DbcTbl[4]) { + if (c <= DbcTbl[5]) return 1; /* 2nd byte range 1 */ + if (c >= DbcTbl[6] && c <= DbcTbl[7]) return 1; /* 2nd byte range 2 */ + if (c >= DbcTbl[8] && c <= DbcTbl[9]) return 1; /* 2nd byte range 3 */ + } +#elif FF_CODE_PAGE >= 900 /* DBCS fixed code page */ + if (c >= DbcTbl[4]) { + if (c <= DbcTbl[5]) return 1; + if (c >= DbcTbl[6] && c <= DbcTbl[7]) return 1; + if (c >= DbcTbl[8] && c <= DbcTbl[9]) return 1; + } +#else /* SBCS fixed code page */ + if (c != 0) return 0; /* Always false */ +#endif + return 0; +} + + +#if FF_USE_LFN + +/* Get a Unicode code point from the TCHAR string in defined API encodeing */ +static DWORD tchar2uni ( /* Returns a character in UTF-16 encoding (>=0x10000 on surrogate pair, 0xFFFFFFFF on decode error) */ + const TCHAR** str /* Pointer to pointer to TCHAR string in configured encoding */ +) +{ + DWORD uc; + const TCHAR *p = *str; + +#if FF_LFN_UNICODE == 1 /* UTF-16 input */ + WCHAR wc; + + uc = *p++; /* Get a unit */ + if (IsSurrogate(uc)) { /* Surrogate? */ + wc = *p++; /* Get low surrogate */ + if (!IsSurrogateH(uc) || !IsSurrogateL(wc)) return 0xFFFFFFFF; /* Wrong surrogate? */ + uc = uc << 16 | wc; + } + +#elif FF_LFN_UNICODE == 2 /* UTF-8 input */ + BYTE b; + int nf; + + uc = (BYTE)*p++; /* Get an encoding unit */ + if (uc & 0x80) { /* Multiple byte code? */ + if ((uc & 0xE0) == 0xC0) { /* 2-byte sequence? */ + uc &= 0x1F; nf = 1; + } else if ((uc & 0xF0) == 0xE0) { /* 3-byte sequence? */ + uc &= 0x0F; nf = 2; + } else if ((uc & 0xF8) == 0xF0) { /* 4-byte sequence? */ + uc &= 0x07; nf = 3; + } else { /* Wrong sequence */ + return 0xFFFFFFFF; + } + do { /* Get trailing bytes */ + b = (BYTE)*p++; + if ((b & 0xC0) != 0x80) return 0xFFFFFFFF; /* Wrong sequence? */ + uc = uc << 6 | (b & 0x3F); + } while (--nf != 0); + if (uc < 0x80 || IsSurrogate(uc) || uc >= 0x110000) return 0xFFFFFFFF; /* Wrong code? */ + if (uc >= 0x010000) uc = 0xD800DC00 | ((uc - 0x10000) << 6 & 0x3FF0000) | (uc & 0x3FF); /* Make a surrogate pair if needed */ + } + +#elif FF_LFN_UNICODE == 3 /* UTF-32 input */ + uc = (TCHAR)*p++; /* Get a unit */ + if (uc >= 0x110000 || IsSurrogate(uc)) return 0xFFFFFFFF; /* Wrong code? */ + if (uc >= 0x010000) uc = 0xD800DC00 | ((uc - 0x10000) << 6 & 0x3FF0000) | (uc & 0x3FF); /* Make a surrogate pair if needed */ + +#else /* ANSI/OEM input */ + BYTE b; + WCHAR wc; + + wc = (BYTE)*p++; /* Get a byte */ + if (dbc_1st((BYTE)wc)) { /* Is it a DBC 1st byte? */ + b = (BYTE)*p++; /* Get 2nd byte */ + if (!dbc_2nd(b)) return 0xFFFFFFFF; /* Invalid code? */ + wc = (wc << 8) + b; /* Make a DBC */ + } + if (wc != 0) { + wc = ff_oem2uni(wc, CODEPAGE); /* ANSI/OEM ==> Unicode */ + if (wc == 0) return 0xFFFFFFFF; /* Invalid code? */ + } + uc = wc; + +#endif + *str = p; /* Next read pointer */ + return uc; +} + + +/* Store a Unicode char in defined API encoding */ +static UINT put_utf ( /* Returns number of encoding units written (0:buffer overflow or wrong encoding) */ + DWORD chr, /* UTF-16 encoded character (Surrogate pair if >=0x10000) */ + TCHAR* buf, /* Output buffer */ + UINT szb /* Size of the buffer */ +) +{ +#if FF_LFN_UNICODE == 1 /* UTF-16 output */ + WCHAR hs, wc; + + hs = (WCHAR)(chr >> 16); + wc = (WCHAR)chr; + if (hs == 0) { /* Single encoding unit? */ + if (szb < 1 || IsSurrogate(wc)) return 0; /* Buffer overflow or wrong code? */ + *buf = wc; + return 1; + } + if (szb < 2 || !IsSurrogateH(hs) || !IsSurrogateL(wc)) return 0; /* Buffer overflow or wrong surrogate? */ + *buf++ = hs; + *buf++ = wc; + return 2; + +#elif FF_LFN_UNICODE == 2 /* UTF-8 output */ + DWORD hc; + + if (chr < 0x80) { /* Single byte code? */ + if (szb < 1) return 0; /* Buffer overflow? */ + *buf = (TCHAR)chr; + return 1; + } + if (chr < 0x800) { /* 2-byte sequence? */ + if (szb < 2) return 0; /* Buffer overflow? */ + *buf++ = (TCHAR)(0xC0 | (chr >> 6 & 0x1F)); + *buf++ = (TCHAR)(0x80 | (chr >> 0 & 0x3F)); + return 2; + } + if (chr < 0x10000) { /* 3-byte sequence? */ + if (szb < 3 || IsSurrogate(chr)) return 0; /* Buffer overflow or wrong code? */ + *buf++ = (TCHAR)(0xE0 | (chr >> 12 & 0x0F)); + *buf++ = (TCHAR)(0x80 | (chr >> 6 & 0x3F)); + *buf++ = (TCHAR)(0x80 | (chr >> 0 & 0x3F)); + return 3; + } + /* 4-byte sequence */ + if (szb < 4) return 0; /* Buffer overflow? */ + hc = ((chr & 0xFFFF0000) - 0xD8000000) >> 6; /* Get high 10 bits */ + chr = (chr & 0xFFFF) - 0xDC00; /* Get low 10 bits */ + if (hc >= 0x100000 || chr >= 0x400) return 0; /* Wrong surrogate? */ + chr = (hc | chr) + 0x10000; + *buf++ = (TCHAR)(0xF0 | (chr >> 18 & 0x07)); + *buf++ = (TCHAR)(0x80 | (chr >> 12 & 0x3F)); + *buf++ = (TCHAR)(0x80 | (chr >> 6 & 0x3F)); + *buf++ = (TCHAR)(0x80 | (chr >> 0 & 0x3F)); + return 4; + +#elif FF_LFN_UNICODE == 3 /* UTF-32 output */ + DWORD hc; + + if (szb < 1) return 0; /* Buffer overflow? */ + if (chr >= 0x10000) { /* Out of BMP? */ + hc = ((chr & 0xFFFF0000) - 0xD8000000) >> 6; /* Get high 10 bits */ + chr = (chr & 0xFFFF) - 0xDC00; /* Get low 10 bits */ + if (hc >= 0x100000 || chr >= 0x400) return 0; /* Wrong surrogate? */ + chr = (hc | chr) + 0x10000; + } + *buf++ = (TCHAR)chr; + return 1; + +#else /* ANSI/OEM output */ + WCHAR wc; + + wc = ff_uni2oem(chr, CODEPAGE); + if (wc >= 0x100) { /* Is this a DBC? */ + if (szb < 2) return 0; + *buf++ = (char)(wc >> 8); /* Store DBC 1st byte */ + *buf++ = (TCHAR)wc; /* Store DBC 2nd byte */ + return 2; + } + if (wc == 0 || szb < 1) return 0; /* Invalid char or buffer overflow? */ + *buf++ = (TCHAR)wc; /* Store the character */ + return 1; +#endif +} +#endif /* FF_USE_LFN */ + + +#if FF_FS_REENTRANT +/*-----------------------------------------------------------------------*/ +/* Request/Release grant to access the volume */ +/*-----------------------------------------------------------------------*/ + +static int lock_volume ( /* 1:Ok, 0:timeout */ + FATFS* fs, /* Filesystem object to lock */ + int syslock /* System lock required */ +) +{ + int rv; + + +#if FF_FS_LOCK + rv = ff_mutex_take(fs->ldrv); /* Lock the volume */ + if (rv && syslock) { /* System lock reqiered? */ + rv = ff_mutex_take(FF_VOLUMES); /* Lock the system */ + if (rv) { + SysLock = 2; /* System lock succeeded */ + } else { + ff_mutex_give(fs->ldrv); /* Failed system lock */ + } + } +#else + rv = syslock ? ff_mutex_take(fs->ldrv) : ff_mutex_take(fs->ldrv); /* Lock the volume (this is to prevent compiler warning) */ +#endif + return rv; +} + + +static void unlock_volume ( + FATFS* fs, /* Filesystem object */ + FRESULT res /* Result code to be returned */ +) +{ + if (fs && res != FR_NOT_ENABLED && res != FR_INVALID_DRIVE && res != FR_TIMEOUT) { +#if FF_FS_LOCK + if (SysLock == 2) { /* Is the system locked? */ + SysLock = 1; + ff_mutex_give(FF_VOLUMES); + } +#endif + ff_mutex_give(fs->ldrv); /* Unlock the volume */ + } +} + +#endif + + + +#if FF_FS_LOCK +/*-----------------------------------------------------------------------*/ +/* File shareing control functions */ +/*-----------------------------------------------------------------------*/ + +static FRESULT chk_share ( /* Check if the file can be accessed */ + DIR* dp, /* Directory object pointing the file to be checked */ + int acc /* Desired access type (0:Read mode open, 1:Write mode open, 2:Delete or rename) */ +) +{ + UINT i, be; + + /* Search open object table for the object */ + be = 0; + for (i = 0; i < FF_FS_LOCK; i++) { + if (Files[i].fs) { /* Existing entry */ + if (Files[i].fs == dp->obj.fs && /* Check if the object matches with an open object */ + Files[i].clu == dp->obj.sclust && + Files[i].ofs == dp->dptr) break; + } else { /* Blank entry */ + be = 1; + } + } + if (i == FF_FS_LOCK) { /* The object has not been opened */ + return (!be && acc != 2) ? FR_TOO_MANY_OPEN_FILES : FR_OK; /* Is there a blank entry for new object? */ + } + + /* The object was opened. Reject any open against writing file and all write mode open */ + return (acc != 0 || Files[i].ctr == 0x100) ? FR_LOCKED : FR_OK; +} + + +static int enq_share (void) /* Check if an entry is available for a new object */ +{ + UINT i; + + for (i = 0; i < FF_FS_LOCK && Files[i].fs; i++) ; /* Find a free entry */ + return (i == FF_FS_LOCK) ? 0 : 1; +} + + +static UINT inc_share ( /* Increment object open counter and returns its index (0:Internal error) */ + DIR* dp, /* Directory object pointing the file to register or increment */ + int acc /* Desired access (0:Read, 1:Write, 2:Delete/Rename) */ +) +{ + UINT i; + + + for (i = 0; i < FF_FS_LOCK; i++) { /* Find the object */ + if (Files[i].fs == dp->obj.fs + && Files[i].clu == dp->obj.sclust + && Files[i].ofs == dp->dptr) break; + } + + if (i == FF_FS_LOCK) { /* Not opened. Register it as new. */ + for (i = 0; i < FF_FS_LOCK && Files[i].fs; i++) ; /* Find a free entry */ + if (i == FF_FS_LOCK) return 0; /* No free entry to register (int err) */ + Files[i].fs = dp->obj.fs; + Files[i].clu = dp->obj.sclust; + Files[i].ofs = dp->dptr; + Files[i].ctr = 0; + } + + if (acc >= 1 && Files[i].ctr) return 0; /* Access violation (int err) */ + + Files[i].ctr = acc ? 0x100 : Files[i].ctr + 1; /* Set semaphore value */ + + return i + 1; /* Index number origin from 1 */ +} + + +static FRESULT dec_share ( /* Decrement object open counter */ + UINT i /* Semaphore index (1..) */ +) +{ + UINT n; + FRESULT res; + + + if (--i < FF_FS_LOCK) { /* Index number origin from 0 */ + n = Files[i].ctr; + if (n == 0x100) n = 0; /* If write mode open, delete the object semaphore */ + if (n > 0) n--; /* Decrement read mode open count */ + Files[i].ctr = n; + if (n == 0) { /* Delete the object semaphore if open count becomes zero */ + Files[i].fs = 0; /* Free the entry << 1, there is a potential error in this process >>> */ + } + res = FR_OK; + } else { + res = FR_INT_ERR; /* Invalid index number */ + } + return res; +} + + +static void clear_share ( /* Clear all lock entries of the volume */ + FATFS* fs +) +{ + UINT i; + + for (i = 0; i < FF_FS_LOCK; i++) { + if (Files[i].fs == fs) Files[i].fs = 0; + } +} + +#endif /* FF_FS_LOCK */ + + + +/*-----------------------------------------------------------------------*/ +/* Move/Flush disk access window in the filesystem object */ +/*-----------------------------------------------------------------------*/ +#if !FF_FS_READONLY +static FRESULT sync_window ( /* Returns FR_OK or FR_DISK_ERR */ + FATFS* fs /* Filesystem object */ +) +{ + FRESULT res = FR_OK; + + + if (fs->wflag) { /* Is the disk access window dirty? */ + if (disk_write(fs->pdrv, fs->win, fs->winsect, 1) == RES_OK) { /* Write it back into the volume */ + fs->wflag = 0; /* Clear window dirty flag */ + if (fs->winsect - fs->fatbase < fs->fsize) { /* Is it in the 1st FAT? */ + if (fs->n_fats == 2) disk_write(fs->pdrv, fs->win, fs->winsect + fs->fsize, 1); /* Reflect it to 2nd FAT if needed */ + } + } else { + res = FR_DISK_ERR; + } + } + return res; +} +#endif + + +static FRESULT move_window ( /* Returns FR_OK or FR_DISK_ERR */ + FATFS* fs, /* Filesystem object */ + LBA_t sect /* Sector LBA to make appearance in the fs->win[] */ +) +{ + FRESULT res = FR_OK; + + + if (sect != fs->winsect) { /* Window offset changed? */ +#if !FF_FS_READONLY + res = sync_window(fs); /* Flush the window */ +#endif + if (res == FR_OK) { /* Fill sector window with new data */ + if (disk_read(fs->pdrv, fs->win, sect, 1) != RES_OK) { + sect = (LBA_t)0 - 1; /* Invalidate window if read data is not valid */ + res = FR_DISK_ERR; + } + fs->winsect = sect; + } + } + return res; +} + + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Synchronize filesystem and data on the storage */ +/*-----------------------------------------------------------------------*/ + +static FRESULT sync_fs ( /* Returns FR_OK or FR_DISK_ERR */ + FATFS* fs /* Filesystem object */ +) +{ + FRESULT res; + + + res = sync_window(fs); + if (res == FR_OK) { + if (fs->fs_type == FS_FAT32 && fs->fsi_flag == 1) { /* FAT32: Update FSInfo sector if needed */ + /* Create FSInfo structure */ + memset(fs->win, 0, sizeof fs->win); + st_word(fs->win + BS_55AA, 0xAA55); /* Boot signature */ + st_dword(fs->win + FSI_LeadSig, 0x41615252); /* Leading signature */ + st_dword(fs->win + FSI_StrucSig, 0x61417272); /* Structure signature */ + st_dword(fs->win + FSI_Free_Count, fs->free_clst); /* Number of free clusters */ + st_dword(fs->win + FSI_Nxt_Free, fs->last_clst); /* Last allocated culuster */ + fs->winsect = fs->volbase + 1; /* Write it into the FSInfo sector (Next to VBR) */ + disk_write(fs->pdrv, fs->win, fs->winsect, 1); + fs->fsi_flag = 0; + } + /* Make sure that no pending write process in the lower layer */ + if (disk_ioctl(fs->pdrv, CTRL_SYNC, 0) != RES_OK) res = FR_DISK_ERR; + } + + return res; +} + +#endif + + + +/*-----------------------------------------------------------------------*/ +/* Get physical sector number from cluster number */ +/*-----------------------------------------------------------------------*/ + +static LBA_t clst2sect ( /* !=0:Sector number, 0:Failed (invalid cluster#) */ + FATFS* fs, /* Filesystem object */ + DWORD clst /* Cluster# to be converted */ +) +{ + clst -= 2; /* Cluster number is origin from 2 */ + if (clst >= fs->n_fatent - 2) return 0; /* Is it invalid cluster number? */ + return fs->database + (LBA_t)fs->csize * clst; /* Start sector number of the cluster */ +} + + + + +/*-----------------------------------------------------------------------*/ +/* FAT access - Read value of an FAT entry */ +/*-----------------------------------------------------------------------*/ + +static DWORD get_fat ( /* 0xFFFFFFFF:Disk error, 1:Internal error, 2..0x7FFFFFFF:Cluster status */ + FFOBJID* obj, /* Corresponding object */ + DWORD clst /* Cluster number to get the value */ +) +{ + UINT wc, bc; + DWORD val; + FATFS *fs = obj->fs; + + + if (clst < 2 || clst >= fs->n_fatent) { /* Check if in valid range */ + val = 1; /* Internal error */ + + } else { + val = 0xFFFFFFFF; /* Default value falls on disk error */ + + switch (fs->fs_type) { + case FS_FAT12 : + bc = (UINT)clst; bc += bc / 2; + if (move_window(fs, fs->fatbase + (bc / SS(fs))) != FR_OK) break; + wc = fs->win[bc++ % SS(fs)]; /* Get 1st byte of the entry */ + if (move_window(fs, fs->fatbase + (bc / SS(fs))) != FR_OK) break; + wc |= fs->win[bc % SS(fs)] << 8; /* Merge 2nd byte of the entry */ + val = (clst & 1) ? (wc >> 4) : (wc & 0xFFF); /* Adjust bit position */ + break; + + case FS_FAT16 : + if (move_window(fs, fs->fatbase + (clst / (SS(fs) / 2))) != FR_OK) break; + val = ld_word(fs->win + clst * 2 % SS(fs)); /* Simple WORD array */ + break; + + case FS_FAT32 : + if (move_window(fs, fs->fatbase + (clst / (SS(fs) / 4))) != FR_OK) break; + val = ld_dword(fs->win + clst * 4 % SS(fs)) & 0x0FFFFFFF; /* Simple DWORD array but mask out upper 4 bits */ + break; +#if FF_FS_EXFAT + case FS_EXFAT : + if ((obj->objsize != 0 && obj->sclust != 0) || obj->stat == 0) { /* Object except root dir must have valid data length */ + DWORD cofs = clst - obj->sclust; /* Offset from start cluster */ + DWORD clen = (DWORD)((LBA_t)((obj->objsize - 1) / SS(fs)) / fs->csize); /* Number of clusters - 1 */ + + if (obj->stat == 2 && cofs <= clen) { /* Is it a contiguous chain? */ + val = (cofs == clen) ? 0x7FFFFFFF : clst + 1; /* No data on the FAT, generate the value */ + break; + } + if (obj->stat == 3 && cofs < obj->n_cont) { /* Is it in the 1st fragment? */ + val = clst + 1; /* Generate the value */ + break; + } + if (obj->stat != 2) { /* Get value from FAT if FAT chain is valid */ + if (obj->n_frag != 0) { /* Is it on the growing edge? */ + val = 0x7FFFFFFF; /* Generate EOC */ + } else { + if (move_window(fs, fs->fatbase + (clst / (SS(fs) / 4))) != FR_OK) break; + val = ld_dword(fs->win + clst * 4 % SS(fs)) & 0x7FFFFFFF; + } + break; + } + } + val = 1; /* Internal error */ + break; +#endif + default: + val = 1; /* Internal error */ + } + } + + return val; +} + + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* FAT access - Change value of an FAT entry */ +/*-----------------------------------------------------------------------*/ + +static FRESULT put_fat ( /* FR_OK(0):succeeded, !=0:error */ + FATFS* fs, /* Corresponding filesystem object */ + DWORD clst, /* FAT index number (cluster number) to be changed */ + DWORD val /* New value to be set to the entry */ +) +{ + UINT bc; + BYTE *p; + FRESULT res = FR_INT_ERR; + + + if (clst >= 2 && clst < fs->n_fatent) { /* Check if in valid range */ + switch (fs->fs_type) { + case FS_FAT12: + bc = (UINT)clst; bc += bc / 2; /* bc: byte offset of the entry */ + res = move_window(fs, fs->fatbase + (bc / SS(fs))); + if (res != FR_OK) break; + p = fs->win + bc++ % SS(fs); + *p = (clst & 1) ? ((*p & 0x0F) | ((BYTE)val << 4)) : (BYTE)val; /* Update 1st byte */ + fs->wflag = 1; + res = move_window(fs, fs->fatbase + (bc / SS(fs))); + if (res != FR_OK) break; + p = fs->win + bc % SS(fs); + *p = (clst & 1) ? (BYTE)(val >> 4) : ((*p & 0xF0) | ((BYTE)(val >> 8) & 0x0F)); /* Update 2nd byte */ + fs->wflag = 1; + break; + + case FS_FAT16: + res = move_window(fs, fs->fatbase + (clst / (SS(fs) / 2))); + if (res != FR_OK) break; + st_word(fs->win + clst * 2 % SS(fs), (WORD)val); /* Simple WORD array */ + fs->wflag = 1; + break; + + case FS_FAT32: +#if FF_FS_EXFAT + case FS_EXFAT: +#endif + res = move_window(fs, fs->fatbase + (clst / (SS(fs) / 4))); + if (res != FR_OK) break; + if (!FF_FS_EXFAT || fs->fs_type != FS_EXFAT) { + val = (val & 0x0FFFFFFF) | (ld_dword(fs->win + clst * 4 % SS(fs)) & 0xF0000000); + } + st_dword(fs->win + clst * 4 % SS(fs), val); + fs->wflag = 1; + break; + } + } + return res; +} + +#endif /* !FF_FS_READONLY */ + + + + +#if FF_FS_EXFAT && !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* exFAT: Accessing FAT and Allocation Bitmap */ +/*-----------------------------------------------------------------------*/ + +/*--------------------------------------*/ +/* Find a contiguous free cluster block */ +/*--------------------------------------*/ + +static DWORD find_bitmap ( /* 0:Not found, 2..:Cluster block found, 0xFFFFFFFF:Disk error */ + FATFS* fs, /* Filesystem object */ + DWORD clst, /* Cluster number to scan from */ + DWORD ncl /* Number of contiguous clusters to find (1..) */ +) +{ + BYTE bm, bv; + UINT i; + DWORD val, scl, ctr; + + + clst -= 2; /* The first bit in the bitmap corresponds to cluster #2 */ + if (clst >= fs->n_fatent - 2) clst = 0; + scl = val = clst; ctr = 0; + for (;;) { + if (move_window(fs, fs->bitbase + val / 8 / SS(fs)) != FR_OK) return 0xFFFFFFFF; + i = val / 8 % SS(fs); bm = 1 << (val % 8); + do { + do { + bv = fs->win[i] & bm; bm <<= 1; /* Get bit value */ + if (++val >= fs->n_fatent - 2) { /* Next cluster (with wrap-around) */ + val = 0; bm = 0; i = SS(fs); + } + if (bv == 0) { /* Is it a free cluster? */ + if (++ctr == ncl) return scl + 2; /* Check if run length is sufficient for required */ + } else { + scl = val; ctr = 0; /* Encountered a cluster in-use, restart to scan */ + } + if (val == clst) return 0; /* All cluster scanned? */ + } while (bm != 0); + bm = 1; + } while (++i < SS(fs)); + } +} + + +/*----------------------------------------*/ +/* Set/Clear a block of allocation bitmap */ +/*----------------------------------------*/ + +static FRESULT change_bitmap ( + FATFS* fs, /* Filesystem object */ + DWORD clst, /* Cluster number to change from */ + DWORD ncl, /* Number of clusters to be changed */ + int bv /* bit value to be set (0 or 1) */ +) +{ + BYTE bm; + UINT i; + LBA_t sect; + + + clst -= 2; /* The first bit corresponds to cluster #2 */ + sect = fs->bitbase + clst / 8 / SS(fs); /* Sector address */ + i = clst / 8 % SS(fs); /* Byte offset in the sector */ + bm = 1 << (clst % 8); /* Bit mask in the byte */ + for (;;) { + if (move_window(fs, sect++) != FR_OK) return FR_DISK_ERR; + do { + do { + if (bv == (int)((fs->win[i] & bm) != 0)) return FR_INT_ERR; /* Is the bit expected value? */ + fs->win[i] ^= bm; /* Flip the bit */ + fs->wflag = 1; + if (--ncl == 0) return FR_OK; /* All bits processed? */ + } while (bm <<= 1); /* Next bit */ + bm = 1; + } while (++i < SS(fs)); /* Next byte */ + i = 0; + } +} + + +/*---------------------------------------------*/ +/* Fill the first fragment of the FAT chain */ +/*---------------------------------------------*/ + +static FRESULT fill_first_frag ( + FFOBJID* obj /* Pointer to the corresponding object */ +) +{ + FRESULT res; + DWORD cl, n; + + + if (obj->stat == 3) { /* Has the object been changed 'fragmented' in this session? */ + for (cl = obj->sclust, n = obj->n_cont; n; cl++, n--) { /* Create cluster chain on the FAT */ + res = put_fat(obj->fs, cl, cl + 1); + if (res != FR_OK) return res; + } + obj->stat = 0; /* Change status 'FAT chain is valid' */ + } + return FR_OK; +} + + +/*---------------------------------------------*/ +/* Fill the last fragment of the FAT chain */ +/*---------------------------------------------*/ + +static FRESULT fill_last_frag ( + FFOBJID* obj, /* Pointer to the corresponding object */ + DWORD lcl, /* Last cluster of the fragment */ + DWORD term /* Value to set the last FAT entry */ +) +{ + FRESULT res; + + + while (obj->n_frag > 0) { /* Create the chain of last fragment */ + res = put_fat(obj->fs, lcl - obj->n_frag + 1, (obj->n_frag > 1) ? lcl - obj->n_frag + 2 : term); + if (res != FR_OK) return res; + obj->n_frag--; + } + return FR_OK; +} + +#endif /* FF_FS_EXFAT && !FF_FS_READONLY */ + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* FAT handling - Remove a cluster chain */ +/*-----------------------------------------------------------------------*/ + +static FRESULT remove_chain ( /* FR_OK(0):succeeded, !=0:error */ + FFOBJID* obj, /* Corresponding object */ + DWORD clst, /* Cluster to remove a chain from */ + DWORD pclst /* Previous cluster of clst (0 if entire chain) */ +) +{ + FRESULT res = FR_OK; + DWORD nxt; + FATFS *fs = obj->fs; +#if FF_FS_EXFAT || FF_USE_TRIM + DWORD scl = clst, ecl = clst; +#endif +#if FF_USE_TRIM + LBA_t rt[2]; +#endif + + if (clst < 2 || clst >= fs->n_fatent) return FR_INT_ERR; /* Check if in valid range */ + + /* Mark the previous cluster 'EOC' on the FAT if it exists */ + if (pclst != 0 && (!FF_FS_EXFAT || fs->fs_type != FS_EXFAT || obj->stat != 2)) { + res = put_fat(fs, pclst, 0xFFFFFFFF); + if (res != FR_OK) return res; + } + + /* Remove the chain */ + do { + nxt = get_fat(obj, clst); /* Get cluster status */ + if (nxt == 0) break; /* Empty cluster? */ + if (nxt == 1) return FR_INT_ERR; /* Internal error? */ + if (nxt == 0xFFFFFFFF) return FR_DISK_ERR; /* Disk error? */ + if (!FF_FS_EXFAT || fs->fs_type != FS_EXFAT) { + res = put_fat(fs, clst, 0); /* Mark the cluster 'free' on the FAT */ + if (res != FR_OK) return res; + } + if (fs->free_clst < fs->n_fatent - 2) { /* Update FSINFO */ + fs->free_clst++; + fs->fsi_flag |= 1; + } +#if FF_FS_EXFAT || FF_USE_TRIM + if (ecl + 1 == nxt) { /* Is next cluster contiguous? */ + ecl = nxt; + } else { /* End of contiguous cluster block */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + res = change_bitmap(fs, scl, ecl - scl + 1, 0); /* Mark the cluster block 'free' on the bitmap */ + if (res != FR_OK) return res; + } +#endif +#if FF_USE_TRIM + rt[0] = clst2sect(fs, scl); /* Start of data area to be freed */ + rt[1] = clst2sect(fs, ecl) + fs->csize - 1; /* End of data area to be freed */ + disk_ioctl(fs->pdrv, CTRL_TRIM, rt); /* Inform storage device that the data in the block may be erased */ +#endif + scl = ecl = nxt; + } +#endif + clst = nxt; /* Next cluster */ + } while (clst < fs->n_fatent); /* Repeat while not the last link */ + +#if FF_FS_EXFAT + /* Some post processes for chain status */ + if (fs->fs_type == FS_EXFAT) { + if (pclst == 0) { /* Has the entire chain been removed? */ + obj->stat = 0; /* Change the chain status 'initial' */ + } else { + if (obj->stat == 0) { /* Is it a fragmented chain from the beginning of this session? */ + clst = obj->sclust; /* Follow the chain to check if it gets contiguous */ + while (clst != pclst) { + nxt = get_fat(obj, clst); + if (nxt < 2) return FR_INT_ERR; + if (nxt == 0xFFFFFFFF) return FR_DISK_ERR; + if (nxt != clst + 1) break; /* Not contiguous? */ + clst++; + } + if (clst == pclst) { /* Has the chain got contiguous again? */ + obj->stat = 2; /* Change the chain status 'contiguous' */ + } + } else { + if (obj->stat == 3 && pclst >= obj->sclust && pclst <= obj->sclust + obj->n_cont) { /* Was the chain fragmented in this session and got contiguous again? */ + obj->stat = 2; /* Change the chain status 'contiguous' */ + } + } + } + } +#endif + return FR_OK; +} + + + + +/*-----------------------------------------------------------------------*/ +/* FAT handling - Stretch a chain or Create a new chain */ +/*-----------------------------------------------------------------------*/ + +static DWORD create_chain ( /* 0:No free cluster, 1:Internal error, 0xFFFFFFFF:Disk error, >=2:New cluster# */ + FFOBJID* obj, /* Corresponding object */ + DWORD clst /* Cluster# to stretch, 0:Create a new chain */ +) +{ + DWORD cs, ncl, scl; + FRESULT res; + FATFS *fs = obj->fs; + + + if (clst == 0) { /* Create a new chain */ + scl = fs->last_clst; /* Suggested cluster to start to find */ + if (scl == 0 || scl >= fs->n_fatent) scl = 1; + } + else { /* Stretch a chain */ + cs = get_fat(obj, clst); /* Check the cluster status */ + if (cs < 2) return 1; /* Test for insanity */ + if (cs == 0xFFFFFFFF) return cs; /* Test for disk error */ + if (cs < fs->n_fatent) return cs; /* It is already followed by next cluster */ + scl = clst; /* Cluster to start to find */ + } + if (fs->free_clst == 0) return 0; /* No free cluster */ + +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* On the exFAT volume */ + ncl = find_bitmap(fs, scl, 1); /* Find a free cluster */ + if (ncl == 0 || ncl == 0xFFFFFFFF) return ncl; /* No free cluster or hard error? */ + res = change_bitmap(fs, ncl, 1, 1); /* Mark the cluster 'in use' */ + if (res == FR_INT_ERR) return 1; + if (res == FR_DISK_ERR) return 0xFFFFFFFF; + if (clst == 0) { /* Is it a new chain? */ + obj->stat = 2; /* Set status 'contiguous' */ + } else { /* It is a stretched chain */ + if (obj->stat == 2 && ncl != scl + 1) { /* Is the chain got fragmented? */ + obj->n_cont = scl - obj->sclust; /* Set size of the contiguous part */ + obj->stat = 3; /* Change status 'just fragmented' */ + } + } + if (obj->stat != 2) { /* Is the file non-contiguous? */ + if (ncl == clst + 1) { /* Is the cluster next to previous one? */ + obj->n_frag = obj->n_frag ? obj->n_frag + 1 : 2; /* Increment size of last framgent */ + } else { /* New fragment */ + if (obj->n_frag == 0) obj->n_frag = 1; + res = fill_last_frag(obj, clst, ncl); /* Fill last fragment on the FAT and link it to new one */ + if (res == FR_OK) obj->n_frag = 1; + } + } + } else +#endif + { /* On the FAT/FAT32 volume */ + ncl = 0; + if (scl == clst) { /* Stretching an existing chain? */ + ncl = scl + 1; /* Test if next cluster is free */ + if (ncl >= fs->n_fatent) ncl = 2; + cs = get_fat(obj, ncl); /* Get next cluster status */ + if (cs == 1 || cs == 0xFFFFFFFF) return cs; /* Test for error */ + if (cs != 0) { /* Not free? */ + cs = fs->last_clst; /* Start at suggested cluster if it is valid */ + if (cs >= 2 && cs < fs->n_fatent) scl = cs; + ncl = 0; + } + } + if (ncl == 0) { /* The new cluster cannot be contiguous and find another fragment */ + ncl = scl; /* Start cluster */ + for (;;) { + ncl++; /* Next cluster */ + if (ncl >= fs->n_fatent) { /* Check wrap-around */ + ncl = 2; + if (ncl > scl) return 0; /* No free cluster found? */ + } + cs = get_fat(obj, ncl); /* Get the cluster status */ + if (cs == 0) break; /* Found a free cluster? */ + if (cs == 1 || cs == 0xFFFFFFFF) return cs; /* Test for error */ + if (ncl == scl) return 0; /* No free cluster found? */ + } + } + res = put_fat(fs, ncl, 0xFFFFFFFF); /* Mark the new cluster 'EOC' */ + if (res == FR_OK && clst != 0) { + res = put_fat(fs, clst, ncl); /* Link it from the previous one if needed */ + } + } + + if (res == FR_OK) { /* Update FSINFO if function succeeded. */ + fs->last_clst = ncl; + if (fs->free_clst <= fs->n_fatent - 2) fs->free_clst--; + fs->fsi_flag |= 1; + } else { + ncl = (res == FR_DISK_ERR) ? 0xFFFFFFFF : 1; /* Failed. Generate error status */ + } + + return ncl; /* Return new cluster number or error status */ +} + +#endif /* !FF_FS_READONLY */ + + + + +#if FF_USE_FASTSEEK +/*-----------------------------------------------------------------------*/ +/* FAT handling - Convert offset into cluster with link map table */ +/*-----------------------------------------------------------------------*/ + +static DWORD clmt_clust ( /* <2:Error, >=2:Cluster number */ + FIL* fp, /* Pointer to the file object */ + FSIZE_t ofs /* File offset to be converted to cluster# */ +) +{ + DWORD cl, ncl; + DWORD *tbl; + FATFS *fs = fp->obj.fs; + + + tbl = fp->cltbl + 1; /* Top of CLMT */ + cl = (DWORD)(ofs / SS(fs) / fs->csize); /* Cluster order from top of the file */ + for (;;) { + ncl = *tbl++; /* Number of cluters in the fragment */ + if (ncl == 0) return 0; /* End of table? (error) */ + if (cl < ncl) break; /* In this fragment? */ + cl -= ncl; tbl++; /* Next fragment */ + } + return cl + *tbl; /* Return the cluster number */ +} + +#endif /* FF_USE_FASTSEEK */ + + + + +/*-----------------------------------------------------------------------*/ +/* Directory handling - Fill a cluster with zeros */ +/*-----------------------------------------------------------------------*/ + +#if !FF_FS_READONLY +static FRESULT dir_clear ( /* Returns FR_OK or FR_DISK_ERR */ + FATFS *fs, /* Filesystem object */ + DWORD clst /* Directory table to clear */ +) +{ + LBA_t sect; + UINT n, szb; + BYTE *ibuf; + + + if (sync_window(fs) != FR_OK) return FR_DISK_ERR; /* Flush disk access window */ + sect = clst2sect(fs, clst); /* Top of the cluster */ + fs->winsect = sect; /* Set window to top of the cluster */ + memset(fs->win, 0, sizeof fs->win); /* Clear window buffer */ +#if FF_USE_LFN == 3 /* Quick table clear by using multi-secter write */ + /* Allocate a temporary buffer */ + for (szb = ((DWORD)fs->csize * SS(fs) >= MAX_MALLOC) ? MAX_MALLOC : fs->csize * SS(fs), ibuf = 0; szb > SS(fs) && (ibuf = ff_memalloc(szb)) == 0; szb /= 2) ; + if (szb > SS(fs)) { /* Buffer allocated? */ + memset(ibuf, 0, szb); + szb /= SS(fs); /* Bytes -> Sectors */ + for (n = 0; n < fs->csize && disk_write(fs->pdrv, ibuf, sect + n, szb) == RES_OK; n += szb) ; /* Fill the cluster with 0 */ + ff_memfree(ibuf); + } else +#endif + { + ibuf = fs->win; szb = 1; /* Use window buffer (many single-sector writes may take a time) */ + for (n = 0; n < fs->csize && disk_write(fs->pdrv, ibuf, sect + n, szb) == RES_OK; n += szb) ; /* Fill the cluster with 0 */ + } + return (n == fs->csize) ? FR_OK : FR_DISK_ERR; +} +#endif /* !FF_FS_READONLY */ + + + + +/*-----------------------------------------------------------------------*/ +/* Directory handling - Set directory index */ +/*-----------------------------------------------------------------------*/ + +static FRESULT dir_sdi ( /* FR_OK(0):succeeded, !=0:error */ + DIR* dp, /* Pointer to directory object */ + DWORD ofs /* Offset of directory table */ +) +{ + DWORD csz, clst; + FATFS *fs = dp->obj.fs; + + + if (ofs >= (DWORD)((FF_FS_EXFAT && fs->fs_type == FS_EXFAT) ? MAX_DIR_EX : MAX_DIR) || ofs % SZDIRE) { /* Check range of offset and alignment */ + return FR_INT_ERR; + } + dp->dptr = ofs; /* Set current offset */ + clst = dp->obj.sclust; /* Table start cluster (0:root) */ + if (clst == 0 && fs->fs_type >= FS_FAT32) { /* Replace cluster# 0 with root cluster# */ + clst = (DWORD)fs->dirbase; + if (FF_FS_EXFAT) dp->obj.stat = 0; /* exFAT: Root dir has an FAT chain */ + } + + if (clst == 0) { /* Static table (root-directory on the FAT volume) */ + if (ofs / SZDIRE >= fs->n_rootdir) return FR_INT_ERR; /* Is index out of range? */ + dp->sect = fs->dirbase; + + } else { /* Dynamic table (sub-directory or root-directory on the FAT32/exFAT volume) */ + csz = (DWORD)fs->csize * SS(fs); /* Bytes per cluster */ + while (ofs >= csz) { /* Follow cluster chain */ + clst = get_fat(&dp->obj, clst); /* Get next cluster */ + if (clst == 0xFFFFFFFF) return FR_DISK_ERR; /* Disk error */ + if (clst < 2 || clst >= fs->n_fatent) return FR_INT_ERR; /* Reached to end of table or internal error */ + ofs -= csz; + } + dp->sect = clst2sect(fs, clst); + } + dp->clust = clst; /* Current cluster# */ + if (dp->sect == 0) return FR_INT_ERR; + dp->sect += ofs / SS(fs); /* Sector# of the directory entry */ + dp->dir = fs->win + (ofs % SS(fs)); /* Pointer to the entry in the win[] */ + + return FR_OK; +} + + + + +/*-----------------------------------------------------------------------*/ +/* Directory handling - Move directory table index next */ +/*-----------------------------------------------------------------------*/ + +static FRESULT dir_next ( /* FR_OK(0):succeeded, FR_NO_FILE:End of table, FR_DENIED:Could not stretch */ + DIR* dp, /* Pointer to the directory object */ + int stretch /* 0: Do not stretch table, 1: Stretch table if needed */ +) +{ + DWORD ofs, clst; + FATFS *fs = dp->obj.fs; + + + ofs = dp->dptr + SZDIRE; /* Next entry */ + if (ofs >= (DWORD)((FF_FS_EXFAT && fs->fs_type == FS_EXFAT) ? MAX_DIR_EX : MAX_DIR)) dp->sect = 0; /* Disable it if the offset reached the max value */ + if (dp->sect == 0) return FR_NO_FILE; /* Report EOT if it has been disabled */ + + if (ofs % SS(fs) == 0) { /* Sector changed? */ + dp->sect++; /* Next sector */ + + if (dp->clust == 0) { /* Static table */ + if (ofs / SZDIRE >= fs->n_rootdir) { /* Report EOT if it reached end of static table */ + dp->sect = 0; return FR_NO_FILE; + } + } + else { /* Dynamic table */ + if ((ofs / SS(fs) & (fs->csize - 1)) == 0) { /* Cluster changed? */ + clst = get_fat(&dp->obj, dp->clust); /* Get next cluster */ + if (clst <= 1) return FR_INT_ERR; /* Internal error */ + if (clst == 0xFFFFFFFF) return FR_DISK_ERR; /* Disk error */ + if (clst >= fs->n_fatent) { /* It reached end of dynamic table */ +#if !FF_FS_READONLY + if (!stretch) { /* If no stretch, report EOT */ + dp->sect = 0; return FR_NO_FILE; + } + clst = create_chain(&dp->obj, dp->clust); /* Allocate a cluster */ + if (clst == 0) return FR_DENIED; /* No free cluster */ + if (clst == 1) return FR_INT_ERR; /* Internal error */ + if (clst == 0xFFFFFFFF) return FR_DISK_ERR; /* Disk error */ + if (dir_clear(fs, clst) != FR_OK) return FR_DISK_ERR; /* Clean up the stretched table */ + if (FF_FS_EXFAT) dp->obj.stat |= 4; /* exFAT: The directory has been stretched */ +#else + if (!stretch) dp->sect = 0; /* (this line is to suppress compiler warning) */ + dp->sect = 0; return FR_NO_FILE; /* Report EOT */ +#endif + } + dp->clust = clst; /* Initialize data for new cluster */ + dp->sect = clst2sect(fs, clst); + } + } + } + dp->dptr = ofs; /* Current entry */ + dp->dir = fs->win + ofs % SS(fs); /* Pointer to the entry in the win[] */ + + return FR_OK; +} + + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Directory handling - Reserve a block of directory entries */ +/*-----------------------------------------------------------------------*/ + +static FRESULT dir_alloc ( /* FR_OK(0):succeeded, !=0:error */ + DIR* dp, /* Pointer to the directory object */ + UINT n_ent /* Number of contiguous entries to allocate */ +) +{ + FRESULT res; + UINT n; + FATFS *fs = dp->obj.fs; + + + res = dir_sdi(dp, 0); + if (res == FR_OK) { + n = 0; + do { + res = move_window(fs, dp->sect); + if (res != FR_OK) break; +#if FF_FS_EXFAT + if ((fs->fs_type == FS_EXFAT) ? (int)((dp->dir[XDIR_Type] & 0x80) == 0) : (int)(dp->dir[DIR_Name] == DDEM || dp->dir[DIR_Name] == 0)) { /* Is the entry free? */ +#else + if (dp->dir[DIR_Name] == DDEM || dp->dir[DIR_Name] == 0) { /* Is the entry free? */ +#endif + if (++n == n_ent) break; /* Is a block of contiguous free entries found? */ + } else { + n = 0; /* Not a free entry, restart to search */ + } + res = dir_next(dp, 1); /* Next entry with table stretch enabled */ + } while (res == FR_OK); + } + + if (res == FR_NO_FILE) res = FR_DENIED; /* No directory entry to allocate */ + return res; +} + +#endif /* !FF_FS_READONLY */ + + + + +/*-----------------------------------------------------------------------*/ +/* FAT: Directory handling - Load/Store start cluster number */ +/*-----------------------------------------------------------------------*/ + +static DWORD ld_clust ( /* Returns the top cluster value of the SFN entry */ + FATFS* fs, /* Pointer to the fs object */ + const BYTE* dir /* Pointer to the key entry */ +) +{ + DWORD cl; + + cl = ld_word(dir + DIR_FstClusLO); + if (fs->fs_type == FS_FAT32) { + cl |= (DWORD)ld_word(dir + DIR_FstClusHI) << 16; + } + + return cl; +} + + +#if !FF_FS_READONLY +static void st_clust ( + FATFS* fs, /* Pointer to the fs object */ + BYTE* dir, /* Pointer to the key entry */ + DWORD cl /* Value to be set */ +) +{ + st_word(dir + DIR_FstClusLO, (WORD)cl); + if (fs->fs_type == FS_FAT32) { + st_word(dir + DIR_FstClusHI, (WORD)(cl >> 16)); + } +} +#endif + + + +#if FF_USE_LFN +/*--------------------------------------------------------*/ +/* FAT-LFN: Compare a part of file name with an LFN entry */ +/*--------------------------------------------------------*/ + +static int cmp_lfn ( /* 1:matched, 0:not matched */ + const WCHAR* lfnbuf, /* Pointer to the LFN working buffer to be compared */ + BYTE* dir /* Pointer to the directory entry containing the part of LFN */ +) +{ + UINT i, s; + WCHAR wc, uc; + + + if (ld_word(dir + LDIR_FstClusLO) != 0) return 0; /* Check LDIR_FstClusLO */ + + i = ((dir[LDIR_Ord] & 0x3F) - 1) * 13; /* Offset in the LFN buffer */ + + for (wc = 1, s = 0; s < 13; s++) { /* Process all characters in the entry */ + uc = ld_word(dir + LfnOfs[s]); /* Pick an LFN character */ + if (wc != 0) { + if (i >= FF_MAX_LFN + 1 || ff_wtoupper(uc) != ff_wtoupper(lfnbuf[i++])) { /* Compare it */ + return 0; /* Not matched */ + } + wc = uc; + } else { + if (uc != 0xFFFF) return 0; /* Check filler */ + } + } + + if ((dir[LDIR_Ord] & LLEF) && wc && lfnbuf[i]) return 0; /* Last segment matched but different length */ + + return 1; /* The part of LFN matched */ +} + + +#if FF_FS_MINIMIZE <= 1 || FF_FS_RPATH >= 2 || FF_USE_LABEL || FF_FS_EXFAT +/*-----------------------------------------------------*/ +/* FAT-LFN: Pick a part of file name from an LFN entry */ +/*-----------------------------------------------------*/ + +static int pick_lfn ( /* 1:succeeded, 0:buffer overflow or invalid LFN entry */ + WCHAR* lfnbuf, /* Pointer to the LFN working buffer */ + BYTE* dir /* Pointer to the LFN entry */ +) +{ + UINT i, s; + WCHAR wc, uc; + + + if (ld_word(dir + LDIR_FstClusLO) != 0) return 0; /* Check LDIR_FstClusLO is 0 */ + + i = ((dir[LDIR_Ord] & ~LLEF) - 1) * 13; /* Offset in the LFN buffer */ + + for (wc = 1, s = 0; s < 13; s++) { /* Process all characters in the entry */ + uc = ld_word(dir + LfnOfs[s]); /* Pick an LFN character */ + if (wc != 0) { + if (i >= FF_MAX_LFN + 1) return 0; /* Buffer overflow? */ + lfnbuf[i++] = wc = uc; /* Store it */ + } else { + if (uc != 0xFFFF) return 0; /* Check filler */ + } + } + + if (dir[LDIR_Ord] & LLEF && wc != 0) { /* Put terminator if it is the last LFN part and not terminated */ + if (i >= FF_MAX_LFN + 1) return 0; /* Buffer overflow? */ + lfnbuf[i] = 0; + } + + return 1; /* The part of LFN is valid */ +} +#endif + + +#if !FF_FS_READONLY +/*-----------------------------------------*/ +/* FAT-LFN: Create an entry of LFN entries */ +/*-----------------------------------------*/ + +static void put_lfn ( + const WCHAR* lfn, /* Pointer to the LFN */ + BYTE* dir, /* Pointer to the LFN entry to be created */ + BYTE ord, /* LFN order (1-20) */ + BYTE sum /* Checksum of the corresponding SFN */ +) +{ + UINT i, s; + WCHAR wc; + + + dir[LDIR_Chksum] = sum; /* Set checksum */ + dir[LDIR_Attr] = AM_LFN; /* Set attribute. LFN entry */ + dir[LDIR_Type] = 0; + st_word(dir + LDIR_FstClusLO, 0); + + i = (ord - 1) * 13; /* Get offset in the LFN working buffer */ + s = wc = 0; + do { + if (wc != 0xFFFF) wc = lfn[i++]; /* Get an effective character */ + st_word(dir + LfnOfs[s], wc); /* Put it */ + if (wc == 0) wc = 0xFFFF; /* Padding characters for following items */ + } while (++s < 13); + if (wc == 0xFFFF || !lfn[i]) ord |= LLEF; /* Last LFN part is the start of LFN sequence */ + dir[LDIR_Ord] = ord; /* Set the LFN order */ +} + +#endif /* !FF_FS_READONLY */ +#endif /* FF_USE_LFN */ + + + +#if FF_USE_LFN && !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* FAT-LFN: Create a Numbered SFN */ +/*-----------------------------------------------------------------------*/ + +static void gen_numname ( + BYTE* dst, /* Pointer to the buffer to store numbered SFN */ + const BYTE* src, /* Pointer to SFN in directory form */ + const WCHAR* lfn, /* Pointer to LFN */ + UINT seq /* Sequence number */ +) +{ + BYTE ns[8], c; + UINT i, j; + WCHAR wc; + DWORD sreg; + + + memcpy(dst, src, 11); /* Prepare the SFN to be modified */ + + if (seq > 5) { /* In case of many collisions, generate a hash number instead of sequential number */ + sreg = seq; + while (*lfn) { /* Create a CRC as hash value */ + wc = *lfn++; + for (i = 0; i < 16; i++) { + sreg = (sreg << 1) + (wc & 1); + wc >>= 1; + if (sreg & 0x10000) sreg ^= 0x11021; + } + } + seq = (UINT)sreg; + } + + /* Make suffix (~ + hexadecimal) */ + i = 7; + do { + c = (BYTE)((seq % 16) + '0'); seq /= 16; + if (c > '9') c += 7; + ns[i--] = c; + } while (i && seq); + ns[i] = '~'; + + /* Append the suffix to the SFN body */ + for (j = 0; j < i && dst[j] != ' '; j++) { /* Find the offset to append */ + if (dbc_1st(dst[j])) { /* To avoid DBC break up */ + if (j == i - 1) break; + j++; + } + } + do { /* Append the suffix */ + dst[j++] = (i < 8) ? ns[i++] : ' '; + } while (j < 8); +} +#endif /* FF_USE_LFN && !FF_FS_READONLY */ + + + +#if FF_USE_LFN +/*-----------------------------------------------------------------------*/ +/* FAT-LFN: Calculate checksum of an SFN entry */ +/*-----------------------------------------------------------------------*/ + +static BYTE sum_sfn ( + const BYTE* dir /* Pointer to the SFN entry */ +) +{ + BYTE sum = 0; + UINT n = 11; + + do { + sum = (sum >> 1) + (sum << 7) + *dir++; + } while (--n); + return sum; +} + +#endif /* FF_USE_LFN */ + + + +#if FF_FS_EXFAT +/*-----------------------------------------------------------------------*/ +/* exFAT: Checksum */ +/*-----------------------------------------------------------------------*/ + +static WORD xdir_sum ( /* Get checksum of the directoly entry block */ + const BYTE* dir /* Directory entry block to be calculated */ +) +{ + UINT i, szblk; + WORD sum; + + + szblk = (dir[XDIR_NumSec] + 1) * SZDIRE; /* Number of bytes of the entry block */ + for (i = sum = 0; i < szblk; i++) { + if (i == XDIR_SetSum) { /* Skip 2-byte sum field */ + i++; + } else { + sum = ((sum & 1) ? 0x8000 : 0) + (sum >> 1) + dir[i]; + } + } + return sum; +} + + + +static WORD xname_sum ( /* Get check sum (to be used as hash) of the file name */ + const WCHAR* name /* File name to be calculated */ +) +{ + WCHAR chr; + WORD sum = 0; + + + while ((chr = *name++) != 0) { + chr = (WCHAR)ff_wtoupper(chr); /* File name needs to be up-case converted */ + sum = ((sum & 1) ? 0x8000 : 0) + (sum >> 1) + (chr & 0xFF); + sum = ((sum & 1) ? 0x8000 : 0) + (sum >> 1) + (chr >> 8); + } + return sum; +} + + +#if !FF_FS_READONLY && FF_USE_MKFS +static DWORD xsum32 ( /* Returns 32-bit checksum */ + BYTE dat, /* Byte to be calculated (byte-by-byte processing) */ + DWORD sum /* Previous sum value */ +) +{ + sum = ((sum & 1) ? 0x80000000 : 0) + (sum >> 1) + dat; + return sum; +} +#endif + + + +/*------------------------------------*/ +/* exFAT: Get a directory entry block */ +/*------------------------------------*/ + +static FRESULT load_xdir ( /* FR_INT_ERR: invalid entry block */ + DIR* dp /* Reading directory object pointing top of the entry block to load */ +) +{ + FRESULT res; + UINT i, sz_ent; + BYTE *dirb = dp->obj.fs->dirbuf; /* Pointer to the on-memory directory entry block 85+C0+C1s */ + + + /* Load file directory entry */ + res = move_window(dp->obj.fs, dp->sect); + if (res != FR_OK) return res; + if (dp->dir[XDIR_Type] != ET_FILEDIR) return FR_INT_ERR; /* Invalid order */ + memcpy(dirb + 0 * SZDIRE, dp->dir, SZDIRE); + sz_ent = (dirb[XDIR_NumSec] + 1) * SZDIRE; + if (sz_ent < 3 * SZDIRE || sz_ent > 19 * SZDIRE) return FR_INT_ERR; + + /* Load stream extension entry */ + res = dir_next(dp, 0); + if (res == FR_NO_FILE) res = FR_INT_ERR; /* It cannot be */ + if (res != FR_OK) return res; + res = move_window(dp->obj.fs, dp->sect); + if (res != FR_OK) return res; + if (dp->dir[XDIR_Type] != ET_STREAM) return FR_INT_ERR; /* Invalid order */ + memcpy(dirb + 1 * SZDIRE, dp->dir, SZDIRE); + if (MAXDIRB(dirb[XDIR_NumName]) > sz_ent) return FR_INT_ERR; + + /* Load file name entries */ + i = 2 * SZDIRE; /* Name offset to load */ + do { + res = dir_next(dp, 0); + if (res == FR_NO_FILE) res = FR_INT_ERR; /* It cannot be */ + if (res != FR_OK) return res; + res = move_window(dp->obj.fs, dp->sect); + if (res != FR_OK) return res; + if (dp->dir[XDIR_Type] != ET_FILENAME) return FR_INT_ERR; /* Invalid order */ + if (i < MAXDIRB(FF_MAX_LFN)) memcpy(dirb + i, dp->dir, SZDIRE); + } while ((i += SZDIRE) < sz_ent); + + /* Sanity check (do it for only accessible object) */ + if (i <= MAXDIRB(FF_MAX_LFN)) { + if (xdir_sum(dirb) != ld_word(dirb + XDIR_SetSum)) return FR_INT_ERR; + } + return FR_OK; +} + + +/*------------------------------------------------------------------*/ +/* exFAT: Initialize object allocation info with loaded entry block */ +/*------------------------------------------------------------------*/ + +static void init_alloc_info ( + FATFS* fs, /* Filesystem object */ + FFOBJID* obj /* Object allocation information to be initialized */ +) +{ + obj->sclust = ld_dword(fs->dirbuf + XDIR_FstClus); /* Start cluster */ + obj->objsize = ld_qword(fs->dirbuf + XDIR_FileSize); /* Size */ + obj->stat = fs->dirbuf[XDIR_GenFlags] & 2; /* Allocation status */ + obj->n_frag = 0; /* No last fragment info */ +} + + + +#if !FF_FS_READONLY || FF_FS_RPATH != 0 +/*------------------------------------------------*/ +/* exFAT: Load the object's directory entry block */ +/*------------------------------------------------*/ + +static FRESULT load_obj_xdir ( + DIR* dp, /* Blank directory object to be used to access containing directory */ + const FFOBJID* obj /* Object with its containing directory information */ +) +{ + FRESULT res; + + /* Open object containing directory */ + dp->obj.fs = obj->fs; + dp->obj.sclust = obj->c_scl; + dp->obj.stat = (BYTE)obj->c_size; + dp->obj.objsize = obj->c_size & 0xFFFFFF00; + dp->obj.n_frag = 0; + dp->blk_ofs = obj->c_ofs; + + res = dir_sdi(dp, dp->blk_ofs); /* Goto object's entry block */ + if (res == FR_OK) { + res = load_xdir(dp); /* Load the object's entry block */ + } + return res; +} +#endif + + +#if !FF_FS_READONLY +/*----------------------------------------*/ +/* exFAT: Store the directory entry block */ +/*----------------------------------------*/ + +static FRESULT store_xdir ( + DIR* dp /* Pointer to the directory object */ +) +{ + FRESULT res; + UINT nent; + BYTE *dirb = dp->obj.fs->dirbuf; /* Pointer to the directory entry block 85+C0+C1s */ + + /* Create set sum */ + st_word(dirb + XDIR_SetSum, xdir_sum(dirb)); + nent = dirb[XDIR_NumSec] + 1; + + /* Store the directory entry block to the directory */ + res = dir_sdi(dp, dp->blk_ofs); + while (res == FR_OK) { + res = move_window(dp->obj.fs, dp->sect); + if (res != FR_OK) break; + memcpy(dp->dir, dirb, SZDIRE); + dp->obj.fs->wflag = 1; + if (--nent == 0) break; + dirb += SZDIRE; + res = dir_next(dp, 0); + } + return (res == FR_OK || res == FR_DISK_ERR) ? res : FR_INT_ERR; +} + + + +/*-------------------------------------------*/ +/* exFAT: Create a new directory entry block */ +/*-------------------------------------------*/ + +static void create_xdir ( + BYTE* dirb, /* Pointer to the directory entry block buffer */ + const WCHAR* lfn /* Pointer to the object name */ +) +{ + UINT i; + BYTE nc1, nlen; + WCHAR wc; + + + /* Create file-directory and stream-extension entry */ + memset(dirb, 0, 2 * SZDIRE); + dirb[0 * SZDIRE + XDIR_Type] = ET_FILEDIR; + dirb[1 * SZDIRE + XDIR_Type] = ET_STREAM; + + /* Create file-name entries */ + i = SZDIRE * 2; /* Top of file_name entries */ + nlen = nc1 = 0; wc = 1; + do { + dirb[i++] = ET_FILENAME; dirb[i++] = 0; + do { /* Fill name field */ + if (wc != 0 && (wc = lfn[nlen]) != 0) nlen++; /* Get a character if exist */ + st_word(dirb + i, wc); /* Store it */ + i += 2; + } while (i % SZDIRE != 0); + nc1++; + } while (lfn[nlen]); /* Fill next entry if any char follows */ + + dirb[XDIR_NumName] = nlen; /* Set name length */ + dirb[XDIR_NumSec] = 1 + nc1; /* Set secondary count (C0 + C1s) */ + st_word(dirb + XDIR_NameHash, xname_sum(lfn)); /* Set name hash */ +} + +#endif /* !FF_FS_READONLY */ +#endif /* FF_FS_EXFAT */ + + + +#if FF_FS_MINIMIZE <= 1 || FF_FS_RPATH >= 2 || FF_USE_LABEL || FF_FS_EXFAT +/*-----------------------------------------------------------------------*/ +/* Read an object from the directory */ +/*-----------------------------------------------------------------------*/ + +#define DIR_READ_FILE(dp) dir_read(dp, 0) +#define DIR_READ_LABEL(dp) dir_read(dp, 1) + +static FRESULT dir_read ( + DIR* dp, /* Pointer to the directory object */ + int vol /* Filtered by 0:file/directory or 1:volume label */ +) +{ + FRESULT res = FR_NO_FILE; + FATFS *fs = dp->obj.fs; + BYTE attr, b; +#if FF_USE_LFN + BYTE ord = 0xFF, sum = 0xFF; +#endif + + while (dp->sect) { + res = move_window(fs, dp->sect); + if (res != FR_OK) break; + b = dp->dir[DIR_Name]; /* Test for the entry type */ + if (b == 0) { + res = FR_NO_FILE; break; /* Reached to end of the directory */ + } +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* On the exFAT volume */ + if (FF_USE_LABEL && vol) { + if (b == ET_VLABEL) break; /* Volume label entry? */ + } else { + if (b == ET_FILEDIR) { /* Start of the file entry block? */ + dp->blk_ofs = dp->dptr; /* Get location of the block */ + res = load_xdir(dp); /* Load the entry block */ + if (res == FR_OK) { + dp->obj.attr = fs->dirbuf[XDIR_Attr] & AM_MASK; /* Get attribute */ + } + break; + } + } + } else +#endif + { /* On the FAT/FAT32 volume */ + dp->obj.attr = attr = dp->dir[DIR_Attr] & AM_MASK; /* Get attribute */ +#if FF_USE_LFN /* LFN configuration */ + if (b == DDEM || b == '.' || (int)((attr & ~AM_ARC) == AM_VOL) != vol) { /* An entry without valid data */ + ord = 0xFF; + } else { + if (attr == AM_LFN) { /* An LFN entry is found */ + if (b & LLEF) { /* Is it start of an LFN sequence? */ + sum = dp->dir[LDIR_Chksum]; + b &= (BYTE)~LLEF; ord = b; + dp->blk_ofs = dp->dptr; + } + /* Check LFN validity and capture it */ + ord = (b == ord && sum == dp->dir[LDIR_Chksum] && pick_lfn(fs->lfnbuf, dp->dir)) ? ord - 1 : 0xFF; + } else { /* An SFN entry is found */ + if (ord != 0 || sum != sum_sfn(dp->dir)) { /* Is there a valid LFN? */ + dp->blk_ofs = 0xFFFFFFFF; /* It has no LFN. */ + } + break; + } + } +#else /* Non LFN configuration */ + if (b != DDEM && b != '.' && attr != AM_LFN && (int)((attr & ~AM_ARC) == AM_VOL) == vol) { /* Is it a valid entry? */ + break; + } +#endif + } + res = dir_next(dp, 0); /* Next entry */ + if (res != FR_OK) break; + } + + if (res != FR_OK) dp->sect = 0; /* Terminate the read operation on error or EOT */ + return res; +} + +#endif /* FF_FS_MINIMIZE <= 1 || FF_USE_LABEL || FF_FS_RPATH >= 2 */ + + + +/*-----------------------------------------------------------------------*/ +/* Directory handling - Find an object in the directory */ +/*-----------------------------------------------------------------------*/ + +static FRESULT dir_find ( /* FR_OK(0):succeeded, !=0:error */ + DIR* dp /* Pointer to the directory object with the file name */ +) +{ + FRESULT res; + FATFS *fs = dp->obj.fs; + BYTE c; +#if FF_USE_LFN + BYTE a, ord, sum; +#endif + + res = dir_sdi(dp, 0); /* Rewind directory object */ + if (res != FR_OK) return res; +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* On the exFAT volume */ + BYTE nc; + UINT di, ni; + WORD hash = xname_sum(fs->lfnbuf); /* Hash value of the name to find */ + + while ((res = DIR_READ_FILE(dp)) == FR_OK) { /* Read an item */ +#if FF_MAX_LFN < 255 + if (fs->dirbuf[XDIR_NumName] > FF_MAX_LFN) continue; /* Skip comparison if inaccessible object name */ +#endif + if (ld_word(fs->dirbuf + XDIR_NameHash) != hash) continue; /* Skip comparison if hash mismatched */ + for (nc = fs->dirbuf[XDIR_NumName], di = SZDIRE * 2, ni = 0; nc; nc--, di += 2, ni++) { /* Compare the name */ + if ((di % SZDIRE) == 0) di += 2; + if (ff_wtoupper(ld_word(fs->dirbuf + di)) != ff_wtoupper(fs->lfnbuf[ni])) break; + } + if (nc == 0 && !fs->lfnbuf[ni]) break; /* Name matched? */ + } + return res; + } +#endif + /* On the FAT/FAT32 volume */ +#if FF_USE_LFN + ord = sum = 0xFF; dp->blk_ofs = 0xFFFFFFFF; /* Reset LFN sequence */ +#endif + do { + res = move_window(fs, dp->sect); + if (res != FR_OK) break; + c = dp->dir[DIR_Name]; + if (c == 0) { res = FR_NO_FILE; break; } /* Reached to end of table */ +#if FF_USE_LFN /* LFN configuration */ + dp->obj.attr = a = dp->dir[DIR_Attr] & AM_MASK; + if (c == DDEM || ((a & AM_VOL) && a != AM_LFN)) { /* An entry without valid data */ + ord = 0xFF; dp->blk_ofs = 0xFFFFFFFF; /* Reset LFN sequence */ + } else { + if (a == AM_LFN) { /* An LFN entry is found */ + if (!(dp->fn[NSFLAG] & NS_NOLFN)) { + if (c & LLEF) { /* Is it start of LFN sequence? */ + sum = dp->dir[LDIR_Chksum]; + c &= (BYTE)~LLEF; ord = c; /* LFN start order */ + dp->blk_ofs = dp->dptr; /* Start offset of LFN */ + } + /* Check validity of the LFN entry and compare it with given name */ + ord = (c == ord && sum == dp->dir[LDIR_Chksum] && cmp_lfn(fs->lfnbuf, dp->dir)) ? ord - 1 : 0xFF; + } + } else { /* An SFN entry is found */ + if (ord == 0 && sum == sum_sfn(dp->dir)) break; /* LFN matched? */ + if (!(dp->fn[NSFLAG] & NS_LOSS) && !memcmp(dp->dir, dp->fn, 11)) break; /* SFN matched? */ + ord = 0xFF; dp->blk_ofs = 0xFFFFFFFF; /* Reset LFN sequence */ + } + } +#else /* Non LFN configuration */ + dp->obj.attr = dp->dir[DIR_Attr] & AM_MASK; + if (!(dp->dir[DIR_Attr] & AM_VOL) && !memcmp(dp->dir, dp->fn, 11)) break; /* Is it a valid entry? */ +#endif + res = dir_next(dp, 0); /* Next entry */ + } while (res == FR_OK); + + return res; +} + + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Register an object to the directory */ +/*-----------------------------------------------------------------------*/ + +static FRESULT dir_register ( /* FR_OK:succeeded, FR_DENIED:no free entry or too many SFN collision, FR_DISK_ERR:disk error */ + DIR* dp /* Target directory with object name to be created */ +) +{ + FRESULT res; + FATFS *fs = dp->obj.fs; +#if FF_USE_LFN /* LFN configuration */ + UINT n, len, n_ent; + BYTE sn[12], sum; + + + if (dp->fn[NSFLAG] & (NS_DOT | NS_NONAME)) return FR_INVALID_NAME; /* Check name validity */ + for (len = 0; fs->lfnbuf[len]; len++) ; /* Get lfn length */ + +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* On the exFAT volume */ + n_ent = (len + 14) / 15 + 2; /* Number of entries to allocate (85+C0+C1s) */ + res = dir_alloc(dp, n_ent); /* Allocate directory entries */ + if (res != FR_OK) return res; + dp->blk_ofs = dp->dptr - SZDIRE * (n_ent - 1); /* Set the allocated entry block offset */ + + if (dp->obj.stat & 4) { /* Has the directory been stretched by new allocation? */ + dp->obj.stat &= ~4; + res = fill_first_frag(&dp->obj); /* Fill the first fragment on the FAT if needed */ + if (res != FR_OK) return res; + res = fill_last_frag(&dp->obj, dp->clust, 0xFFFFFFFF); /* Fill the last fragment on the FAT if needed */ + if (res != FR_OK) return res; + if (dp->obj.sclust != 0) { /* Is it a sub-directory? */ + DIR dj; + + res = load_obj_xdir(&dj, &dp->obj); /* Load the object status */ + if (res != FR_OK) return res; + dp->obj.objsize += (DWORD)fs->csize * SS(fs); /* Increase the directory size by cluster size */ + st_qword(fs->dirbuf + XDIR_FileSize, dp->obj.objsize); + st_qword(fs->dirbuf + XDIR_ValidFileSize, dp->obj.objsize); + fs->dirbuf[XDIR_GenFlags] = dp->obj.stat | 1; /* Update the allocation status */ + res = store_xdir(&dj); /* Store the object status */ + if (res != FR_OK) return res; + } + } + + create_xdir(fs->dirbuf, fs->lfnbuf); /* Create on-memory directory block to be written later */ + return FR_OK; + } +#endif + /* On the FAT/FAT32 volume */ + memcpy(sn, dp->fn, 12); + if (sn[NSFLAG] & NS_LOSS) { /* When LFN is out of 8.3 format, generate a numbered name */ + dp->fn[NSFLAG] = NS_NOLFN; /* Find only SFN */ + for (n = 1; n < 100; n++) { + gen_numname(dp->fn, sn, fs->lfnbuf, n); /* Generate a numbered name */ + res = dir_find(dp); /* Check if the name collides with existing SFN */ + if (res != FR_OK) break; + } + if (n == 100) return FR_DENIED; /* Abort if too many collisions */ + if (res != FR_NO_FILE) return res; /* Abort if the result is other than 'not collided' */ + dp->fn[NSFLAG] = sn[NSFLAG]; + } + + /* Create an SFN with/without LFNs. */ + n_ent = (sn[NSFLAG] & NS_LFN) ? (len + 12) / 13 + 1 : 1; /* Number of entries to allocate */ + res = dir_alloc(dp, n_ent); /* Allocate entries */ + if (res == FR_OK && --n_ent) { /* Set LFN entry if needed */ + res = dir_sdi(dp, dp->dptr - n_ent * SZDIRE); + if (res == FR_OK) { + sum = sum_sfn(dp->fn); /* Checksum value of the SFN tied to the LFN */ + do { /* Store LFN entries in bottom first */ + res = move_window(fs, dp->sect); + if (res != FR_OK) break; + put_lfn(fs->lfnbuf, dp->dir, (BYTE)n_ent, sum); + fs->wflag = 1; + res = dir_next(dp, 0); /* Next entry */ + } while (res == FR_OK && --n_ent); + } + } + +#else /* Non LFN configuration */ + res = dir_alloc(dp, 1); /* Allocate an entry for SFN */ + +#endif + + /* Set SFN entry */ + if (res == FR_OK) { + res = move_window(fs, dp->sect); + if (res == FR_OK) { + memset(dp->dir, 0, SZDIRE); /* Clean the entry */ + memcpy(dp->dir + DIR_Name, dp->fn, 11); /* Put SFN */ +#if FF_USE_LFN + dp->dir[DIR_NTres] = dp->fn[NSFLAG] & (NS_BODY | NS_EXT); /* Put NT flag */ +#endif + fs->wflag = 1; + } + } + + return res; +} + +#endif /* !FF_FS_READONLY */ + + + +#if !FF_FS_READONLY && FF_FS_MINIMIZE == 0 +/*-----------------------------------------------------------------------*/ +/* Remove an object from the directory */ +/*-----------------------------------------------------------------------*/ + +static FRESULT dir_remove ( /* FR_OK:Succeeded, FR_DISK_ERR:A disk error */ + DIR* dp /* Directory object pointing the entry to be removed */ +) +{ + FRESULT res; + FATFS *fs = dp->obj.fs; +#if FF_USE_LFN /* LFN configuration */ + DWORD last = dp->dptr; + + res = (dp->blk_ofs == 0xFFFFFFFF) ? FR_OK : dir_sdi(dp, dp->blk_ofs); /* Goto top of the entry block if LFN is exist */ + if (res == FR_OK) { + do { + res = move_window(fs, dp->sect); + if (res != FR_OK) break; + if (FF_FS_EXFAT && fs->fs_type == FS_EXFAT) { /* On the exFAT volume */ + dp->dir[XDIR_Type] &= 0x7F; /* Clear the entry InUse flag. */ + } else { /* On the FAT/FAT32 volume */ + dp->dir[DIR_Name] = DDEM; /* Mark the entry 'deleted'. */ + } + fs->wflag = 1; + if (dp->dptr >= last) break; /* If reached last entry then all entries of the object has been deleted. */ + res = dir_next(dp, 0); /* Next entry */ + } while (res == FR_OK); + if (res == FR_NO_FILE) res = FR_INT_ERR; + } +#else /* Non LFN configuration */ + + res = move_window(fs, dp->sect); + if (res == FR_OK) { + dp->dir[DIR_Name] = DDEM; /* Mark the entry 'deleted'.*/ + fs->wflag = 1; + } +#endif + + return res; +} + +#endif /* !FF_FS_READONLY && FF_FS_MINIMIZE == 0 */ + + + +#if FF_FS_MINIMIZE <= 1 || FF_FS_RPATH >= 2 +/*-----------------------------------------------------------------------*/ +/* Get file information from directory entry */ +/*-----------------------------------------------------------------------*/ + +static void get_fileinfo ( + DIR* dp, /* Pointer to the directory object */ + FILINFO* fno /* Pointer to the file information to be filled */ +) +{ + UINT si, di; +#if FF_USE_LFN + BYTE lcf; + WCHAR wc, hs; + FATFS *fs = dp->obj.fs; + UINT nw; +#else + TCHAR c; +#endif + + + fno->fname[0] = 0; /* Invaidate file info */ + if (dp->sect == 0) return; /* Exit if read pointer has reached end of directory */ + +#if FF_USE_LFN /* LFN configuration */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* exFAT volume */ + UINT nc = 0; + + si = SZDIRE * 2; di = 0; /* 1st C1 entry in the entry block */ + hs = 0; + while (nc < fs->dirbuf[XDIR_NumName]) { + if (si >= MAXDIRB(FF_MAX_LFN)) { /* Truncated directory block? */ + di = 0; break; + } + if ((si % SZDIRE) == 0) si += 2; /* Skip entry type field */ + wc = ld_word(fs->dirbuf + si); si += 2; nc++; /* Get a character */ + if (hs == 0 && IsSurrogate(wc)) { /* Is it a surrogate? */ + hs = wc; continue; /* Get low surrogate */ + } + nw = put_utf((DWORD)hs << 16 | wc, &fno->fname[di], FF_LFN_BUF - di); /* Store it in API encoding */ + if (nw == 0) { /* Buffer overflow or wrong char? */ + di = 0; break; + } + di += nw; + hs = 0; + } + if (hs != 0) di = 0; /* Broken surrogate pair? */ + if (di == 0) fno->fname[di++] = '\?'; /* Inaccessible object name? */ + fno->fname[di] = 0; /* Terminate the name */ + fno->altname[0] = 0; /* exFAT does not support SFN */ + + fno->fattrib = fs->dirbuf[XDIR_Attr] & AM_MASKX; /* Attribute */ + fno->fsize = (fno->fattrib & AM_DIR) ? 0 : ld_qword(fs->dirbuf + XDIR_FileSize); /* Size */ + fno->ftime = ld_word(fs->dirbuf + XDIR_ModTime + 0); /* Time */ + fno->fdate = ld_word(fs->dirbuf + XDIR_ModTime + 2); /* Date */ + return; + } else +#endif + { /* FAT/FAT32 volume */ + if (dp->blk_ofs != 0xFFFFFFFF) { /* Get LFN if available */ + si = di = 0; + hs = 0; + while (fs->lfnbuf[si] != 0) { + wc = fs->lfnbuf[si++]; /* Get an LFN character (UTF-16) */ + if (hs == 0 && IsSurrogate(wc)) { /* Is it a surrogate? */ + hs = wc; continue; /* Get low surrogate */ + } + nw = put_utf((DWORD)hs << 16 | wc, &fno->fname[di], FF_LFN_BUF - di); /* Store it in API encoding */ + if (nw == 0) { /* Buffer overflow or wrong char? */ + di = 0; break; + } + di += nw; + hs = 0; + } + if (hs != 0) di = 0; /* Broken surrogate pair? */ + fno->fname[di] = 0; /* Terminate the LFN (null string means LFN is invalid) */ + } + } + + si = di = 0; + while (si < 11) { /* Get SFN from SFN entry */ + wc = dp->dir[si++]; /* Get a char */ + if (wc == ' ') continue; /* Skip padding spaces */ + if (wc == RDDEM) wc = DDEM; /* Restore replaced DDEM character */ + if (si == 9 && di < FF_SFN_BUF) fno->altname[di++] = '.'; /* Insert a . if extension is exist */ +#if FF_LFN_UNICODE >= 1 /* Unicode output */ + if (dbc_1st((BYTE)wc) && si != 8 && si != 11 && dbc_2nd(dp->dir[si])) { /* Make a DBC if needed */ + wc = wc << 8 | dp->dir[si++]; + } + wc = ff_oem2uni(wc, CODEPAGE); /* ANSI/OEM -> Unicode */ + if (wc == 0) { /* Wrong char in the current code page? */ + di = 0; break; + } + nw = put_utf(wc, &fno->altname[di], FF_SFN_BUF - di); /* Store it in API encoding */ + if (nw == 0) { /* Buffer overflow? */ + di = 0; break; + } + di += nw; +#else /* ANSI/OEM output */ + fno->altname[di++] = (TCHAR)wc; /* Store it without any conversion */ +#endif + } + fno->altname[di] = 0; /* Terminate the SFN (null string means SFN is invalid) */ + + if (fno->fname[0] == 0) { /* If LFN is invalid, altname[] needs to be copied to fname[] */ + if (di == 0) { /* If LFN and SFN both are invalid, this object is inaccessible */ + fno->fname[di++] = '\?'; + } else { + for (si = di = 0, lcf = NS_BODY; fno->altname[si]; si++, di++) { /* Copy altname[] to fname[] with case information */ + wc = (WCHAR)fno->altname[si]; + if (wc == '.') lcf = NS_EXT; + if (IsUpper(wc) && (dp->dir[DIR_NTres] & lcf)) wc += 0x20; + fno->fname[di] = (TCHAR)wc; + } + } + fno->fname[di] = 0; /* Terminate the LFN */ + if (!dp->dir[DIR_NTres]) fno->altname[0] = 0; /* Altname is not needed if neither LFN nor case info is exist. */ + } + +#else /* Non-LFN configuration */ + si = di = 0; + while (si < 11) { /* Copy name body and extension */ + c = (TCHAR)dp->dir[si++]; + if (c == ' ') continue; /* Skip padding spaces */ + if (c == RDDEM) c = DDEM; /* Restore replaced DDEM character */ + if (si == 9) fno->fname[di++] = '.';/* Insert a . if extension is exist */ + fno->fname[di++] = c; + } + fno->fname[di] = 0; /* Terminate the SFN */ +#endif + + fno->fattrib = dp->dir[DIR_Attr] & AM_MASK; /* Attribute */ + fno->fsize = ld_dword(dp->dir + DIR_FileSize); /* Size */ + fno->ftime = ld_word(dp->dir + DIR_ModTime + 0); /* Time */ + fno->fdate = ld_word(dp->dir + DIR_ModTime + 2); /* Date */ +} + +#endif /* FF_FS_MINIMIZE <= 1 || FF_FS_RPATH >= 2 */ + + + +#if FF_USE_FIND && FF_FS_MINIMIZE <= 1 +/*-----------------------------------------------------------------------*/ +/* Pattern matching */ +/*-----------------------------------------------------------------------*/ + +#define FIND_RECURS 4 /* Maximum number of wildcard terms in the pattern to limit recursion */ + + +static DWORD get_achar ( /* Get a character and advance ptr */ + const TCHAR** ptr /* Pointer to pointer to the ANSI/OEM or Unicode string */ +) +{ + DWORD chr; + + +#if FF_USE_LFN && FF_LFN_UNICODE >= 1 /* Unicode input */ + chr = tchar2uni(ptr); + if (chr == 0xFFFFFFFF) chr = 0; /* Wrong UTF encoding is recognized as end of the string */ + chr = ff_wtoupper(chr); + +#else /* ANSI/OEM input */ + chr = (BYTE)*(*ptr)++; /* Get a byte */ + if (IsLower(chr)) chr -= 0x20; /* To upper ASCII char */ +#if FF_CODE_PAGE == 0 + if (ExCvt && chr >= 0x80) chr = ExCvt[chr - 0x80]; /* To upper SBCS extended char */ +#elif FF_CODE_PAGE < 900 + if (chr >= 0x80) chr = ExCvt[chr - 0x80]; /* To upper SBCS extended char */ +#endif +#if FF_CODE_PAGE == 0 || FF_CODE_PAGE >= 900 + if (dbc_1st((BYTE)chr)) { /* Get DBC 2nd byte if needed */ + chr = dbc_2nd((BYTE)**ptr) ? chr << 8 | (BYTE)*(*ptr)++ : 0; + } +#endif + +#endif + return chr; +} + + +static int pattern_match ( /* 0:mismatched, 1:matched */ + const TCHAR* pat, /* Matching pattern */ + const TCHAR* nam, /* String to be tested */ + UINT skip, /* Number of pre-skip chars (number of ?s, b8:infinite (* specified)) */ + UINT recur /* Recursion count */ +) +{ + const TCHAR *pptr; + const TCHAR *nptr; + DWORD pchr, nchr; + UINT sk; + + + while ((skip & 0xFF) != 0) { /* Pre-skip name chars */ + if (!get_achar(&nam)) return 0; /* Branch mismatched if less name chars */ + skip--; + } + if (*pat == 0 && skip) return 1; /* Matched? (short circuit) */ + + do { + pptr = pat; nptr = nam; /* Top of pattern and name to match */ + for (;;) { + if (*pptr == '\?' || *pptr == '*') { /* Wildcard term? */ + if (recur == 0) return 0; /* Too many wildcard terms? */ + sk = 0; + do { /* Analyze the wildcard term */ + if (*pptr++ == '\?') { + sk++; + } else { + sk |= 0x100; + } + } while (*pptr == '\?' || *pptr == '*'); + if (pattern_match(pptr, nptr, sk, recur - 1)) return 1; /* Test new branch (recursive call) */ + nchr = *nptr; break; /* Branch mismatched */ + } + pchr = get_achar(&pptr); /* Get a pattern char */ + nchr = get_achar(&nptr); /* Get a name char */ + if (pchr != nchr) break; /* Branch mismatched? */ + if (pchr == 0) return 1; /* Branch matched? (matched at end of both strings) */ + } + get_achar(&nam); /* nam++ */ + } while (skip && nchr); /* Retry until end of name if infinite search is specified */ + + return 0; +} + +#endif /* FF_USE_FIND && FF_FS_MINIMIZE <= 1 */ + + + +/*-----------------------------------------------------------------------*/ +/* Pick a top segment and create the object name in directory form */ +/*-----------------------------------------------------------------------*/ + +static FRESULT create_name ( /* FR_OK: successful, FR_INVALID_NAME: could not create */ + DIR* dp, /* Pointer to the directory object */ + const TCHAR** path /* Pointer to pointer to the segment in the path string */ +) +{ +#if FF_USE_LFN /* LFN configuration */ + BYTE b, cf; + WCHAR wc; + WCHAR *lfn; + const TCHAR* p; + DWORD uc; + UINT i, ni, si, di; + + + /* Create LFN into LFN working buffer */ + p = *path; lfn = dp->obj.fs->lfnbuf; di = 0; + for (;;) { + uc = tchar2uni(&p); /* Get a character */ + if (uc == 0xFFFFFFFF) return FR_INVALID_NAME; /* Invalid code or UTF decode error */ + if (uc >= 0x10000) lfn[di++] = (WCHAR)(uc >> 16); /* Store high surrogate if needed */ + wc = (WCHAR)uc; + if (wc < ' ' || IsSeparator(wc)) break; /* Break if end of the path or a separator is found */ + if (wc < 0x80 && strchr("*:<>|\"\?\x7F", (int)wc)) return FR_INVALID_NAME; /* Reject illegal characters for LFN */ + if (di >= FF_MAX_LFN) return FR_INVALID_NAME; /* Reject too long name */ + lfn[di++] = wc; /* Store the Unicode character */ + } + if (wc < ' ') { /* Stopped at end of the path? */ + cf = NS_LAST; /* Last segment */ + } else { /* Stopped at a separator */ + while (IsSeparator(*p)) p++; /* Skip duplicated separators if exist */ + cf = 0; /* Next segment may follow */ + if (IsTerminator(*p)) cf = NS_LAST; /* Ignore terminating separator */ + } + *path = p; /* Return pointer to the next segment */ + +#if FF_FS_RPATH != 0 + if ((di == 1 && lfn[di - 1] == '.') || + (di == 2 && lfn[di - 1] == '.' && lfn[di - 2] == '.')) { /* Is this segment a dot name? */ + lfn[di] = 0; + for (i = 0; i < 11; i++) { /* Create dot name for SFN entry */ + dp->fn[i] = (i < di) ? '.' : ' '; + } + dp->fn[i] = cf | NS_DOT; /* This is a dot entry */ + return FR_OK; + } +#endif + while (di) { /* Snip off trailing spaces and dots if exist */ + wc = lfn[di - 1]; + if (wc != ' ' && wc != '.') break; + di--; + } + lfn[di] = 0; /* LFN is created into the working buffer */ + if (di == 0) return FR_INVALID_NAME; /* Reject null name */ + + /* Create SFN in directory form */ + for (si = 0; lfn[si] == ' '; si++) ; /* Remove leading spaces */ + if (si > 0 || lfn[si] == '.') cf |= NS_LOSS | NS_LFN; /* Is there any leading space or dot? */ + while (di > 0 && lfn[di - 1] != '.') di--; /* Find last dot (di<=si: no extension) */ + + memset(dp->fn, ' ', 11); + i = b = 0; ni = 8; + for (;;) { + wc = lfn[si++]; /* Get an LFN character */ + if (wc == 0) break; /* Break on end of the LFN */ + if (wc == ' ' || (wc == '.' && si != di)) { /* Remove embedded spaces and dots */ + cf |= NS_LOSS | NS_LFN; + continue; + } + + if (i >= ni || si == di) { /* End of field? */ + if (ni == 11) { /* Name extension overflow? */ + cf |= NS_LOSS | NS_LFN; + break; + } + if (si != di) cf |= NS_LOSS | NS_LFN; /* Name body overflow? */ + if (si > di) break; /* No name extension? */ + si = di; i = 8; ni = 11; b <<= 2; /* Enter name extension */ + continue; + } + + if (wc >= 0x80) { /* Is this an extended character? */ + cf |= NS_LFN; /* LFN entry needs to be created */ +#if FF_CODE_PAGE == 0 + if (ExCvt) { /* In SBCS cfg */ + wc = ff_uni2oem(wc, CODEPAGE); /* Unicode ==> ANSI/OEM code */ + if (wc & 0x80) wc = ExCvt[wc & 0x7F]; /* Convert extended character to upper (SBCS) */ + } else { /* In DBCS cfg */ + wc = ff_uni2oem(ff_wtoupper(wc), CODEPAGE); /* Unicode ==> Up-convert ==> ANSI/OEM code */ + } +#elif FF_CODE_PAGE < 900 /* In SBCS cfg */ + wc = ff_uni2oem(wc, CODEPAGE); /* Unicode ==> ANSI/OEM code */ + if (wc & 0x80) wc = ExCvt[wc & 0x7F]; /* Convert extended character to upper (SBCS) */ +#else /* In DBCS cfg */ + wc = ff_uni2oem(ff_wtoupper(wc), CODEPAGE); /* Unicode ==> Up-convert ==> ANSI/OEM code */ +#endif + } + + if (wc >= 0x100) { /* Is this a DBC? */ + if (i >= ni - 1) { /* Field overflow? */ + cf |= NS_LOSS | NS_LFN; + i = ni; continue; /* Next field */ + } + dp->fn[i++] = (BYTE)(wc >> 8); /* Put 1st byte */ + } else { /* SBC */ + if (wc == 0 || strchr("+,;=[]", (int)wc)) { /* Replace illegal characters for SFN */ + wc = '_'; cf |= NS_LOSS | NS_LFN;/* Lossy conversion */ + } else { + if (IsUpper(wc)) { /* ASCII upper case? */ + b |= 2; + } + if (IsLower(wc)) { /* ASCII lower case? */ + b |= 1; wc -= 0x20; + } + } + } + dp->fn[i++] = (BYTE)wc; + } + + if (dp->fn[0] == DDEM) dp->fn[0] = RDDEM; /* If the first character collides with DDEM, replace it with RDDEM */ + + if (ni == 8) b <<= 2; /* Shift capital flags if no extension */ + if ((b & 0x0C) == 0x0C || (b & 0x03) == 0x03) cf |= NS_LFN; /* LFN entry needs to be created if composite capitals */ + if (!(cf & NS_LFN)) { /* When LFN is in 8.3 format without extended character, NT flags are created */ + if (b & 0x01) cf |= NS_EXT; /* NT flag (Extension has small capital letters only) */ + if (b & 0x04) cf |= NS_BODY; /* NT flag (Body has small capital letters only) */ + } + + dp->fn[NSFLAG] = cf; /* SFN is created into dp->fn[] */ + + return FR_OK; + + +#else /* FF_USE_LFN : Non-LFN configuration */ + BYTE c, d; + BYTE *sfn; + UINT ni, si, i; + const char *p; + + /* Create file name in directory form */ + p = *path; sfn = dp->fn; + memset(sfn, ' ', 11); + si = i = 0; ni = 8; +#if FF_FS_RPATH != 0 + if (p[si] == '.') { /* Is this a dot entry? */ + for (;;) { + c = (BYTE)p[si++]; + if (c != '.' || si >= 3) break; + sfn[i++] = c; + } + if (!IsSeparator(c) && c > ' ') return FR_INVALID_NAME; + *path = p + si; /* Return pointer to the next segment */ + sfn[NSFLAG] = (c <= ' ') ? NS_LAST | NS_DOT : NS_DOT; /* Set last segment flag if end of the path */ + return FR_OK; + } +#endif + for (;;) { + c = (BYTE)p[si++]; /* Get a byte */ + if (c <= ' ') break; /* Break if end of the path name */ + if (IsSeparator(c)) { /* Break if a separator is found */ + while (IsSeparator(p[si])) si++; /* Skip duplicated separator if exist */ + break; + } + if (c == '.' || i >= ni) { /* End of body or field overflow? */ + if (ni == 11 || c != '.') return FR_INVALID_NAME; /* Field overflow or invalid dot? */ + i = 8; ni = 11; /* Enter file extension field */ + continue; + } +#if FF_CODE_PAGE == 0 + if (ExCvt && c >= 0x80) { /* Is SBC extended character? */ + c = ExCvt[c & 0x7F]; /* To upper SBC extended character */ + } +#elif FF_CODE_PAGE < 900 + if (c >= 0x80) { /* Is SBC extended character? */ + c = ExCvt[c & 0x7F]; /* To upper SBC extended character */ + } +#endif + if (dbc_1st(c)) { /* Check if it is a DBC 1st byte */ + d = (BYTE)p[si++]; /* Get 2nd byte */ + if (!dbc_2nd(d) || i >= ni - 1) return FR_INVALID_NAME; /* Reject invalid DBC */ + sfn[i++] = c; + sfn[i++] = d; + } else { /* SBC */ + if (strchr("*+,:;<=>[]|\"\?\x7F", (int)c)) return FR_INVALID_NAME; /* Reject illegal chrs for SFN */ + if (IsLower(c)) c -= 0x20; /* To upper */ + sfn[i++] = c; + } + } + *path = &p[si]; /* Return pointer to the next segment */ + if (i == 0) return FR_INVALID_NAME; /* Reject nul string */ + + if (sfn[0] == DDEM) sfn[0] = RDDEM; /* If the first character collides with DDEM, replace it with RDDEM */ + sfn[NSFLAG] = (c <= ' ' || p[si] <= ' ') ? NS_LAST : 0; /* Set last segment flag if end of the path */ + + return FR_OK; +#endif /* FF_USE_LFN */ +} + + + + +/*-----------------------------------------------------------------------*/ +/* Follow a file path */ +/*-----------------------------------------------------------------------*/ + +static FRESULT follow_path ( /* FR_OK(0): successful, !=0: error code */ + DIR* dp, /* Directory object to return last directory and found object */ + const TCHAR* path /* Full-path string to find a file or directory */ +) +{ + FRESULT res; + BYTE ns; + FATFS *fs = dp->obj.fs; + + +#if FF_FS_RPATH != 0 + if (!IsSeparator(*path) && (FF_STR_VOLUME_ID != 2 || !IsTerminator(*path))) { /* Without heading separator */ + dp->obj.sclust = fs->cdir; /* Start at the current directory */ + } else +#endif + { /* With heading separator */ + while (IsSeparator(*path)) path++; /* Strip separators */ + dp->obj.sclust = 0; /* Start from the root directory */ + } +#if FF_FS_EXFAT + dp->obj.n_frag = 0; /* Invalidate last fragment counter of the object */ +#if FF_FS_RPATH != 0 + if (fs->fs_type == FS_EXFAT && dp->obj.sclust) { /* exFAT: Retrieve the sub-directory's status */ + DIR dj; + + dp->obj.c_scl = fs->cdc_scl; + dp->obj.c_size = fs->cdc_size; + dp->obj.c_ofs = fs->cdc_ofs; + res = load_obj_xdir(&dj, &dp->obj); + if (res != FR_OK) return res; + dp->obj.objsize = ld_dword(fs->dirbuf + XDIR_FileSize); + dp->obj.stat = fs->dirbuf[XDIR_GenFlags] & 2; + } +#endif +#endif + + if ((UINT)*path < ' ') { /* Null path name is the origin directory itself */ + dp->fn[NSFLAG] = NS_NONAME; + res = dir_sdi(dp, 0); + + } else { /* Follow path */ + for (;;) { + res = create_name(dp, &path); /* Get a segment name of the path */ + if (res != FR_OK) break; + res = dir_find(dp); /* Find an object with the segment name */ + ns = dp->fn[NSFLAG]; + if (res != FR_OK) { /* Failed to find the object */ + if (res == FR_NO_FILE) { /* Object is not found */ + if (FF_FS_RPATH && (ns & NS_DOT)) { /* If dot entry is not exist, stay there */ + if (!(ns & NS_LAST)) continue; /* Continue to follow if not last segment */ + dp->fn[NSFLAG] = NS_NONAME; + res = FR_OK; + } else { /* Could not find the object */ + if (!(ns & NS_LAST)) res = FR_NO_PATH; /* Adjust error code if not last segment */ + } + } + break; + } + if (ns & NS_LAST) break; /* Last segment matched. Function completed. */ + /* Get into the sub-directory */ + if (!(dp->obj.attr & AM_DIR)) { /* It is not a sub-directory and cannot follow */ + res = FR_NO_PATH; break; + } +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* Save containing directory information for next dir */ + dp->obj.c_scl = dp->obj.sclust; + dp->obj.c_size = ((DWORD)dp->obj.objsize & 0xFFFFFF00) | dp->obj.stat; + dp->obj.c_ofs = dp->blk_ofs; + init_alloc_info(fs, &dp->obj); /* Open next directory */ + } else +#endif + { + dp->obj.sclust = ld_clust(fs, fs->win + dp->dptr % SS(fs)); /* Open next directory */ + } + } + } + + return res; +} + + + + +/*-----------------------------------------------------------------------*/ +/* Get logical drive number from path name */ +/*-----------------------------------------------------------------------*/ + +static int get_ldnumber ( /* Returns logical drive number (-1:invalid drive number or null pointer) */ + const TCHAR** path /* Pointer to pointer to the path name */ +) +{ + const TCHAR *tp; + const TCHAR *tt; + TCHAR tc; + int i; + int vol = -1; +#if FF_STR_VOLUME_ID /* Find string volume ID */ + const char *sp; + char c; +#endif + + tt = tp = *path; + if (!tp) return vol; /* Invalid path name? */ + do { /* Find a colon in the path */ + tc = *tt++; + } while (!IsTerminator(tc) && tc != ':'); + + if (tc == ':') { /* DOS/Windows style volume ID? */ + i = FF_VOLUMES; + if (IsDigit(*tp) && tp + 2 == tt) { /* Is there a numeric volume ID + colon? */ + i = (int)*tp - '0'; /* Get the LD number */ + } +#if FF_STR_VOLUME_ID == 1 /* Arbitrary string is enabled */ + else { + i = 0; + do { + sp = VolumeStr[i]; tp = *path; /* This string volume ID and path name */ + do { /* Compare the volume ID with path name */ + c = *sp++; tc = *tp++; + if (IsLower(c)) c -= 0x20; + if (IsLower(tc)) tc -= 0x20; + } while (c && (TCHAR)c == tc); + } while ((c || tp != tt) && ++i < FF_VOLUMES); /* Repeat for each id until pattern match */ + } +#endif + if (i < FF_VOLUMES) { /* If a volume ID is found, get the drive number and strip it */ + vol = i; /* Drive number */ + *path = tt; /* Snip the drive prefix off */ + } + return vol; + } +#if FF_STR_VOLUME_ID == 2 /* Unix style volume ID is enabled */ + if (*tp == '/') { /* Is there a volume ID? */ + while (*(tp + 1) == '/') tp++; /* Skip duplicated separator */ + i = 0; + do { + tt = tp; sp = VolumeStr[i]; /* Path name and this string volume ID */ + do { /* Compare the volume ID with path name */ + c = *sp++; tc = *(++tt); + if (IsLower(c)) c -= 0x20; + if (IsLower(tc)) tc -= 0x20; + } while (c && (TCHAR)c == tc); + } while ((c || (tc != '/' && !IsTerminator(tc))) && ++i < FF_VOLUMES); /* Repeat for each ID until pattern match */ + if (i < FF_VOLUMES) { /* If a volume ID is found, get the drive number and strip it */ + vol = i; /* Drive number */ + *path = tt; /* Snip the drive prefix off */ + } + return vol; + } +#endif + /* No drive prefix is found */ +#if FF_FS_RPATH != 0 + vol = CurrVol; /* Default drive is current drive */ +#else + vol = 0; /* Default drive is 0 */ +#endif + return vol; /* Return the default drive */ +} + + + + +/*-----------------------------------------------------------------------*/ +/* GPT support functions */ +/*-----------------------------------------------------------------------*/ + +#if FF_LBA64 + +/* Calculate CRC32 in byte-by-byte */ + +static DWORD crc32 ( /* Returns next CRC value */ + DWORD crc, /* Current CRC value */ + BYTE d /* A byte to be processed */ +) +{ + BYTE b; + + + for (b = 1; b; b <<= 1) { + crc ^= (d & b) ? 1 : 0; + crc = (crc & 1) ? crc >> 1 ^ 0xEDB88320 : crc >> 1; + } + return crc; +} + + +/* Check validity of GPT header */ + +static int test_gpt_header ( /* 0:Invalid, 1:Valid */ + const BYTE* gpth /* Pointer to the GPT header */ +) +{ + UINT i; + DWORD bcc, hlen; + + + if (memcmp(gpth + GPTH_Sign, "EFI PART" "\0\0\1", 12)) return 0; /* Check signature and version (1.0) */ + hlen = ld_dword(gpth + GPTH_Size); /* Check header size */ + if (hlen < 92 || hlen > FF_MIN_SS) return 0; + for (i = 0, bcc = 0xFFFFFFFF; i < hlen; i++) { /* Check header BCC */ + bcc = crc32(bcc, i - GPTH_Bcc < 4 ? 0 : gpth[i]); + } + if (~bcc != ld_dword(gpth + GPTH_Bcc)) return 0; + if (ld_dword(gpth + GPTH_PteSize) != SZ_GPTE) return 0; /* Table entry size (must be SZ_GPTE bytes) */ + if (ld_dword(gpth + GPTH_PtNum) > 128) return 0; /* Table size (must be 128 entries or less) */ + + return 1; +} + +#if !FF_FS_READONLY && FF_USE_MKFS + +/* Generate random value */ +static DWORD make_rand ( + DWORD seed, /* Seed value */ + BYTE *buff, /* Output buffer */ + UINT n /* Data length */ +) +{ + UINT r; + + + if (seed == 0) seed = 1; + do { + for (r = 0; r < 8; r++) seed = seed & 1 ? seed >> 1 ^ 0xA3000000 : seed >> 1; /* Shift 8 bits the 32-bit LFSR */ + *buff++ = (BYTE)seed; + } while (--n); + return seed; +} + +#endif +#endif + + + +/*-----------------------------------------------------------------------*/ +/* Load a sector and check if it is an FAT VBR */ +/*-----------------------------------------------------------------------*/ + +/* Check what the sector is */ + +static UINT check_fs ( /* 0:FAT/FAT32 VBR, 1:exFAT VBR, 2:Not FAT and valid BS, 3:Not FAT and invalid BS, 4:Disk error */ + FATFS* fs, /* Filesystem object */ + LBA_t sect /* Sector to load and check if it is an FAT-VBR or not */ +) +{ + WORD w, sign; + BYTE b; + + + fs->wflag = 0; fs->winsect = (LBA_t)0 - 1; /* Invaidate window */ + if (move_window(fs, sect) != FR_OK) return 4; /* Load the boot sector */ + sign = ld_word(fs->win + BS_55AA); +#if FF_FS_EXFAT + if (sign == 0xAA55 && !memcmp(fs->win + BS_JmpBoot, "\xEB\x76\x90" "EXFAT ", 11)) return 1; /* It is an exFAT VBR */ +#endif + b = fs->win[BS_JmpBoot]; + if (b == 0xEB || b == 0xE9 || b == 0xE8) { /* Valid JumpBoot code? (short jump, near jump or near call) */ + if (sign == 0xAA55 && !memcmp(fs->win + BS_FilSysType32, "FAT32 ", 8)) { + return 0; /* It is an FAT32 VBR */ + } + /* FAT volumes formatted with early MS-DOS lack BS_55AA and BS_FilSysType, so FAT VBR needs to be identified without them. */ + w = ld_word(fs->win + BPB_BytsPerSec); + b = fs->win[BPB_SecPerClus]; + if ((w & (w - 1)) == 0 && w >= FF_MIN_SS && w <= FF_MAX_SS /* Properness of sector size (512-4096 and 2^n) */ + && b != 0 && (b & (b - 1)) == 0 /* Properness of cluster size (2^n) */ + && ld_word(fs->win + BPB_RsvdSecCnt) != 0 /* Properness of reserved sectors (MNBZ) */ + && (UINT)fs->win[BPB_NumFATs] - 1 <= 1 /* Properness of FATs (1 or 2) */ + && ld_word(fs->win + BPB_RootEntCnt) != 0 /* Properness of root dir entries (MNBZ) */ + && (ld_word(fs->win + BPB_TotSec16) >= 128 || ld_dword(fs->win + BPB_TotSec32) >= 0x10000) /* Properness of volume sectors (>=128) */ + && ld_word(fs->win + BPB_FATSz16) != 0) { /* Properness of FAT size (MNBZ) */ + return 0; /* It can be presumed an FAT VBR */ + } + } + return sign == 0xAA55 ? 2 : 3; /* Not an FAT VBR (valid or invalid BS) */ +} + + +/* Find an FAT volume */ +/* (It supports only generic partitioning rules, MBR, GPT and SFD) */ + +static UINT find_volume ( /* Returns BS status found in the hosting drive */ + FATFS* fs, /* Filesystem object */ + UINT part /* Partition to fined = 0:find as SFD and partitions, >0:forced partition number */ +) +{ + UINT fmt, i; + DWORD mbr_pt[4]; + + + fmt = check_fs(fs, 0); /* Load sector 0 and check if it is an FAT VBR as SFD format */ + if (fmt != 2 && (fmt >= 3 || part == 0)) return fmt; /* Returns if it is an FAT VBR as auto scan, not a BS or disk error */ + + /* Sector 0 is not an FAT VBR or forced partition number wants a partition */ + +#if FF_LBA64 + if (fs->win[MBR_Table + PTE_System] == 0xEE) { /* GPT protective MBR? */ + DWORD n_ent, v_ent, ofs; + QWORD pt_lba; + + if (move_window(fs, 1) != FR_OK) return 4; /* Load GPT header sector (next to MBR) */ + if (!test_gpt_header(fs->win)) return 3; /* Check if GPT header is valid */ + n_ent = ld_dword(fs->win + GPTH_PtNum); /* Number of entries */ + pt_lba = ld_qword(fs->win + GPTH_PtOfs); /* Table location */ + for (v_ent = i = 0; i < n_ent; i++) { /* Find FAT partition */ + if (move_window(fs, pt_lba + i * SZ_GPTE / SS(fs)) != FR_OK) return 4; /* PT sector */ + ofs = i * SZ_GPTE % SS(fs); /* Offset in the sector */ + if (!memcmp(fs->win + ofs + GPTE_PtGuid, GUID_MS_Basic, 16)) { /* MS basic data partition? */ + v_ent++; + fmt = check_fs(fs, ld_qword(fs->win + ofs + GPTE_FstLba)); /* Load VBR and check status */ + if (part == 0 && fmt <= 1) return fmt; /* Auto search (valid FAT volume found first) */ + if (part != 0 && v_ent == part) return fmt; /* Forced partition order (regardless of it is valid or not) */ + } + } + return 3; /* Not found */ + } +#endif + if (FF_MULTI_PARTITION && part > 4) return 3; /* MBR has 4 partitions max */ + for (i = 0; i < 4; i++) { /* Load partition offset in the MBR */ + mbr_pt[i] = ld_dword(fs->win + MBR_Table + i * SZ_PTE + PTE_StLba); + } + i = part ? part - 1 : 0; /* Table index to find first */ + do { /* Find an FAT volume */ + fmt = mbr_pt[i] ? check_fs(fs, mbr_pt[i]) : 3; /* Check if the partition is FAT */ + } while (part == 0 && fmt >= 2 && ++i < 4); + return fmt; +} + + + + +/*-----------------------------------------------------------------------*/ +/* Determine logical drive number and mount the volume if needed */ +/*-----------------------------------------------------------------------*/ + +static FRESULT mount_volume ( /* FR_OK(0): successful, !=0: an error occurred */ + const TCHAR** path, /* Pointer to pointer to the path name (drive number) */ + FATFS** rfs, /* Pointer to pointer to the found filesystem object */ + BYTE mode /* Desiered access mode to check write protection */ +) +{ + int vol; + FATFS *fs; + DSTATUS stat; + LBA_t bsect; + DWORD tsect, sysect, fasize, nclst, szbfat; + WORD nrsv; + UINT fmt; + + + /* Get logical drive number */ + *rfs = 0; + vol = get_ldnumber(path); + if (vol < 0) return FR_INVALID_DRIVE; + + /* Check if the filesystem object is valid or not */ + fs = FatFs[vol]; /* Get pointer to the filesystem object */ + if (!fs) return FR_NOT_ENABLED; /* Is the filesystem object available? */ +#if FF_FS_REENTRANT + if (!lock_volume(fs, 1)) return FR_TIMEOUT; /* Lock the volume, and system if needed */ +#endif + *rfs = fs; /* Return pointer to the filesystem object */ + + mode &= (BYTE)~FA_READ; /* Desired access mode, write access or not */ + if (fs->fs_type != 0) { /* If the volume has been mounted */ + stat = disk_status(fs->pdrv); + if (!(stat & STA_NOINIT)) { /* and the physical drive is kept initialized */ + if (!FF_FS_READONLY && mode && (stat & STA_PROTECT)) { /* Check write protection if needed */ + return FR_WRITE_PROTECTED; + } + return FR_OK; /* The filesystem object is already valid */ + } + } + + /* The filesystem object is not valid. */ + /* Following code attempts to mount the volume. (find an FAT volume, analyze the BPB and initialize the filesystem object) */ + + fs->fs_type = 0; /* Invalidate the filesystem object */ + stat = disk_initialize(fs->pdrv); /* Initialize the volume hosting physical drive */ + if (stat & STA_NOINIT) { /* Check if the initialization succeeded */ + return FR_NOT_READY; /* Failed to initialize due to no medium or hard error */ + } + if (!FF_FS_READONLY && mode && (stat & STA_PROTECT)) { /* Check disk write protection if needed */ + return FR_WRITE_PROTECTED; + } +#if FF_MAX_SS != FF_MIN_SS /* Get sector size (multiple sector size cfg only) */ + if (disk_ioctl(fs->pdrv, GET_SECTOR_SIZE, &SS(fs)) != RES_OK) return FR_DISK_ERR; + if (SS(fs) > FF_MAX_SS || SS(fs) < FF_MIN_SS || (SS(fs) & (SS(fs) - 1))) return FR_DISK_ERR; +#endif + + /* Find an FAT volume on the hosting drive */ + fmt = find_volume(fs, LD2PT(vol)); + if (fmt == 4) return FR_DISK_ERR; /* An error occurred in the disk I/O layer */ + if (fmt >= 2) return FR_NO_FILESYSTEM; /* No FAT volume is found */ + bsect = fs->winsect; /* Volume offset in the hosting physical drive */ + + /* An FAT volume is found (bsect). Following code initializes the filesystem object */ + +#if FF_FS_EXFAT + if (fmt == 1) { + QWORD maxlba; + DWORD so, cv, bcl, i; + + for (i = BPB_ZeroedEx; i < BPB_ZeroedEx + 53 && fs->win[i] == 0; i++) ; /* Check zero filler */ + if (i < BPB_ZeroedEx + 53) return FR_NO_FILESYSTEM; + + if (ld_word(fs->win + BPB_FSVerEx) != 0x100) return FR_NO_FILESYSTEM; /* Check exFAT version (must be version 1.0) */ + + if (1 << fs->win[BPB_BytsPerSecEx] != SS(fs)) { /* (BPB_BytsPerSecEx must be equal to the physical sector size) */ + return FR_NO_FILESYSTEM; + } + + maxlba = ld_qword(fs->win + BPB_TotSecEx) + bsect; /* Last LBA of the volume + 1 */ + if (!FF_LBA64 && maxlba >= 0x100000000) return FR_NO_FILESYSTEM; /* (It cannot be accessed in 32-bit LBA) */ + + fs->fsize = ld_dword(fs->win + BPB_FatSzEx); /* Number of sectors per FAT */ + + fs->n_fats = fs->win[BPB_NumFATsEx]; /* Number of FATs */ + if (fs->n_fats != 1) return FR_NO_FILESYSTEM; /* (Supports only 1 FAT) */ + + fs->csize = 1 << fs->win[BPB_SecPerClusEx]; /* Cluster size */ + if (fs->csize == 0) return FR_NO_FILESYSTEM; /* (Must be 1..32768 sectors) */ + + nclst = ld_dword(fs->win + BPB_NumClusEx); /* Number of clusters */ + if (nclst > MAX_EXFAT) return FR_NO_FILESYSTEM; /* (Too many clusters) */ + fs->n_fatent = nclst + 2; + + /* Boundaries and Limits */ + fs->volbase = bsect; + fs->database = bsect + ld_dword(fs->win + BPB_DataOfsEx); + fs->fatbase = bsect + ld_dword(fs->win + BPB_FatOfsEx); + if (maxlba < (QWORD)fs->database + nclst * fs->csize) return FR_NO_FILESYSTEM; /* (Volume size must not be smaller than the size required) */ + fs->dirbase = ld_dword(fs->win + BPB_RootClusEx); + + /* Get bitmap location and check if it is contiguous (implementation assumption) */ + so = i = 0; + for (;;) { /* Find the bitmap entry in the root directory (in only first cluster) */ + if (i == 0) { + if (so >= fs->csize) return FR_NO_FILESYSTEM; /* Not found? */ + if (move_window(fs, clst2sect(fs, (DWORD)fs->dirbase) + so) != FR_OK) return FR_DISK_ERR; + so++; + } + if (fs->win[i] == ET_BITMAP) break; /* Is it a bitmap entry? */ + i = (i + SZDIRE) % SS(fs); /* Next entry */ + } + bcl = ld_dword(fs->win + i + 20); /* Bitmap cluster */ + if (bcl < 2 || bcl >= fs->n_fatent) return FR_NO_FILESYSTEM; /* (Wrong cluster#) */ + fs->bitbase = fs->database + fs->csize * (bcl - 2); /* Bitmap sector */ + for (;;) { /* Check if bitmap is contiguous */ + if (move_window(fs, fs->fatbase + bcl / (SS(fs) / 4)) != FR_OK) return FR_DISK_ERR; + cv = ld_dword(fs->win + bcl % (SS(fs) / 4) * 4); + if (cv == 0xFFFFFFFF) break; /* Last link? */ + if (cv != ++bcl) return FR_NO_FILESYSTEM; /* Fragmented bitmap? */ + } + +#if !FF_FS_READONLY + fs->last_clst = fs->free_clst = 0xFFFFFFFF; /* Initialize cluster allocation information */ +#endif + fmt = FS_EXFAT; /* FAT sub-type */ + } else +#endif /* FF_FS_EXFAT */ + { + if (ld_word(fs->win + BPB_BytsPerSec) != SS(fs)) return FR_NO_FILESYSTEM; /* (BPB_BytsPerSec must be equal to the physical sector size) */ + + fasize = ld_word(fs->win + BPB_FATSz16); /* Number of sectors per FAT */ + if (fasize == 0) fasize = ld_dword(fs->win + BPB_FATSz32); + fs->fsize = fasize; + + fs->n_fats = fs->win[BPB_NumFATs]; /* Number of FATs */ + if (fs->n_fats != 1 && fs->n_fats != 2) return FR_NO_FILESYSTEM; /* (Must be 1 or 2) */ + fasize *= fs->n_fats; /* Number of sectors for FAT area */ + + fs->csize = fs->win[BPB_SecPerClus]; /* Cluster size */ + if (fs->csize == 0 || (fs->csize & (fs->csize - 1))) return FR_NO_FILESYSTEM; /* (Must be power of 2) */ + + fs->n_rootdir = ld_word(fs->win + BPB_RootEntCnt); /* Number of root directory entries */ + if (fs->n_rootdir % (SS(fs) / SZDIRE)) return FR_NO_FILESYSTEM; /* (Must be sector aligned) */ + + tsect = ld_word(fs->win + BPB_TotSec16); /* Number of sectors on the volume */ + if (tsect == 0) tsect = ld_dword(fs->win + BPB_TotSec32); + + nrsv = ld_word(fs->win + BPB_RsvdSecCnt); /* Number of reserved sectors */ + if (nrsv == 0) return FR_NO_FILESYSTEM; /* (Must not be 0) */ + + /* Determine the FAT sub type */ + sysect = nrsv + fasize + fs->n_rootdir / (SS(fs) / SZDIRE); /* RSV + FAT + DIR */ + if (tsect < sysect) return FR_NO_FILESYSTEM; /* (Invalid volume size) */ + nclst = (tsect - sysect) / fs->csize; /* Number of clusters */ + if (nclst == 0) return FR_NO_FILESYSTEM; /* (Invalid volume size) */ + fmt = 0; + if (nclst <= MAX_FAT32) fmt = FS_FAT32; + if (nclst <= MAX_FAT16) fmt = FS_FAT16; + if (nclst <= MAX_FAT12) fmt = FS_FAT12; + if (fmt == 0) return FR_NO_FILESYSTEM; + + /* Boundaries and Limits */ + fs->n_fatent = nclst + 2; /* Number of FAT entries */ + fs->volbase = bsect; /* Volume start sector */ + fs->fatbase = bsect + nrsv; /* FAT start sector */ + fs->database = bsect + sysect; /* Data start sector */ + if (fmt == FS_FAT32) { + if (ld_word(fs->win + BPB_FSVer32) != 0) return FR_NO_FILESYSTEM; /* (Must be FAT32 revision 0.0) */ + if (fs->n_rootdir != 0) return FR_NO_FILESYSTEM; /* (BPB_RootEntCnt must be 0) */ + fs->dirbase = ld_dword(fs->win + BPB_RootClus32); /* Root directory start cluster */ + szbfat = fs->n_fatent * 4; /* (Needed FAT size) */ + } else { + if (fs->n_rootdir == 0) return FR_NO_FILESYSTEM; /* (BPB_RootEntCnt must not be 0) */ + fs->dirbase = fs->fatbase + fasize; /* Root directory start sector */ + szbfat = (fmt == FS_FAT16) ? /* (Needed FAT size) */ + fs->n_fatent * 2 : fs->n_fatent * 3 / 2 + (fs->n_fatent & 1); + } + if (fs->fsize < (szbfat + (SS(fs) - 1)) / SS(fs)) return FR_NO_FILESYSTEM; /* (BPB_FATSz must not be less than the size needed) */ + +#if !FF_FS_READONLY + /* Get FSInfo if available */ + fs->last_clst = fs->free_clst = 0xFFFFFFFF; /* Initialize cluster allocation information */ + fs->fsi_flag = 0x80; +#if (FF_FS_NOFSINFO & 3) != 3 + if (fmt == FS_FAT32 /* Allow to update FSInfo only if BPB_FSInfo32 == 1 */ + && ld_word(fs->win + BPB_FSInfo32) == 1 + && move_window(fs, bsect + 1) == FR_OK) + { + fs->fsi_flag = 0; + if (ld_word(fs->win + BS_55AA) == 0xAA55 /* Load FSInfo data if available */ + && ld_dword(fs->win + FSI_LeadSig) == 0x41615252 + && ld_dword(fs->win + FSI_StrucSig) == 0x61417272) + { +#if (FF_FS_NOFSINFO & 1) == 0 + fs->free_clst = ld_dword(fs->win + FSI_Free_Count); +#endif +#if (FF_FS_NOFSINFO & 2) == 0 + fs->last_clst = ld_dword(fs->win + FSI_Nxt_Free); +#endif + } + } +#endif /* (FF_FS_NOFSINFO & 3) != 3 */ +#endif /* !FF_FS_READONLY */ + } + + fs->fs_type = (BYTE)fmt;/* FAT sub-type (the filesystem object gets valid) */ + fs->id = ++Fsid; /* Volume mount ID */ +#if FF_USE_LFN == 1 + fs->lfnbuf = LfnBuf; /* Static LFN working buffer */ +#if FF_FS_EXFAT + fs->dirbuf = DirBuf; /* Static directory block scratchpad buuffer */ +#endif +#endif +#if FF_FS_RPATH != 0 + fs->cdir = 0; /* Initialize current directory */ +#endif +#if FF_FS_LOCK /* Clear file lock semaphores */ + clear_share(fs); +#endif + return FR_OK; +} + + + + +/*-----------------------------------------------------------------------*/ +/* Check if the file/directory object is valid or not */ +/*-----------------------------------------------------------------------*/ + +static FRESULT validate ( /* Returns FR_OK or FR_INVALID_OBJECT */ + FFOBJID* obj, /* Pointer to the FFOBJID, the 1st member in the FIL/DIR structure, to check validity */ + FATFS** rfs /* Pointer to pointer to the owner filesystem object to return */ +) +{ + FRESULT res = FR_INVALID_OBJECT; + + + if (obj && obj->fs && obj->fs->fs_type && obj->id == obj->fs->id) { /* Test if the object is valid */ +#if FF_FS_REENTRANT + if (lock_volume(obj->fs, 0)) { /* Take a grant to access the volume */ + if (!(disk_status(obj->fs->pdrv) & STA_NOINIT)) { /* Test if the hosting phsical drive is kept initialized */ + res = FR_OK; + } else { + unlock_volume(obj->fs, FR_OK); /* Invalidated volume, abort to access */ + } + } else { /* Could not take */ + res = FR_TIMEOUT; + } +#else + if (!(disk_status(obj->fs->pdrv) & STA_NOINIT)) { /* Test if the hosting phsical drive is kept initialized */ + res = FR_OK; + } +#endif + } + *rfs = (res == FR_OK) ? obj->fs : 0; /* Return corresponding filesystem object if it is valid */ + return res; +} + + + + +/*--------------------------------------------------------------------------- + + Public Functions (FatFs API) + +----------------------------------------------------------------------------*/ + + + +/*-----------------------------------------------------------------------*/ +/* Mount/Unmount a Logical Drive */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_mount ( + FATFS* fs, /* Pointer to the filesystem object to be registered (NULL:unmount)*/ + const TCHAR* path, /* Logical drive number to be mounted/unmounted */ + BYTE opt /* Mount option: 0=Do not mount (delayed mount), 1=Mount immediately */ +) +{ + FATFS *cfs; + int vol; + FRESULT res; + const TCHAR *rp = path; + + + /* Get volume ID (logical drive number) */ + vol = get_ldnumber(&rp); + if (vol < 0) return FR_INVALID_DRIVE; + cfs = FatFs[vol]; /* Pointer to the filesystem object of the volume */ + + if (cfs) { /* Unregister current filesystem object if regsitered */ + FatFs[vol] = 0; +#if FF_FS_LOCK + clear_share(cfs); +#endif +#if FF_FS_REENTRANT /* Discard mutex of the current volume */ + ff_mutex_delete(vol); +#endif + cfs->fs_type = 0; /* Invalidate the filesystem object to be unregistered */ + } + + if (fs) { /* Register new filesystem object */ + fs->pdrv = LD2PD(vol); /* Volume hosting physical drive */ +#if FF_FS_REENTRANT /* Create a volume mutex */ + fs->ldrv = (BYTE)vol; /* Owner volume ID */ + if (!ff_mutex_create(vol)) return FR_INT_ERR; +#if FF_FS_LOCK + if (SysLock == 0) { /* Create a system mutex if needed */ + if (!ff_mutex_create(FF_VOLUMES)) { + ff_mutex_delete(vol); + return FR_INT_ERR; + } + SysLock = 1; /* System mutex is ready */ + } +#endif +#endif + fs->fs_type = 0; /* Invalidate the new filesystem object */ + FatFs[vol] = fs; /* Register new fs object */ + } + + if (opt == 0) return FR_OK; /* Do not mount now, it will be mounted in subsequent file functions */ + + res = mount_volume(&path, &fs, 0); /* Force mounted the volume */ + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Open or Create a File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_open ( + FIL* fp, /* Pointer to the blank file object */ + const TCHAR* path, /* Pointer to the file name */ + BYTE mode /* Access mode and open mode flags */ +) +{ + FRESULT res; + DIR dj; + FATFS *fs; +#if !FF_FS_READONLY + DWORD cl, bcs, clst, tm; + LBA_t sc; + FSIZE_t ofs; +#endif + DEF_NAMBUF + + + if (!fp) return FR_INVALID_OBJECT; + + /* Get logical drive number */ + mode &= FF_FS_READONLY ? FA_READ : FA_READ | FA_WRITE | FA_CREATE_ALWAYS | FA_CREATE_NEW | FA_OPEN_ALWAYS | FA_OPEN_APPEND; + res = mount_volume(&path, &fs, mode); + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&dj, path); /* Follow the file path */ +#if !FF_FS_READONLY /* Read/Write configuration */ + if (res == FR_OK) { + if (dj.fn[NSFLAG] & NS_NONAME) { /* Origin directory itself? */ + res = FR_INVALID_NAME; + } +#if FF_FS_LOCK + else { + res = chk_share(&dj, (mode & ~FA_READ) ? 1 : 0); /* Check if the file can be used */ + } +#endif + } + /* Create or Open a file */ + if (mode & (FA_CREATE_ALWAYS | FA_OPEN_ALWAYS | FA_CREATE_NEW)) { + if (res != FR_OK) { /* No file, create new */ + if (res == FR_NO_FILE) { /* There is no file to open, create a new entry */ +#if FF_FS_LOCK + res = enq_share() ? dir_register(&dj) : FR_TOO_MANY_OPEN_FILES; +#else + res = dir_register(&dj); +#endif + } + mode |= FA_CREATE_ALWAYS; /* File is created */ + } + else { /* Any object with the same name is already existing */ + if (dj.obj.attr & (AM_RDO | AM_DIR)) { /* Cannot overwrite it (R/O or DIR) */ + res = FR_DENIED; + } else { + if (mode & FA_CREATE_NEW) res = FR_EXIST; /* Cannot create as new file */ + } + } + if (res == FR_OK && (mode & FA_CREATE_ALWAYS)) { /* Truncate the file if overwrite mode */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + /* Get current allocation info */ + fp->obj.fs = fs; + init_alloc_info(fs, &fp->obj); + /* Set directory entry block initial state */ + memset(fs->dirbuf + 2, 0, 30); /* Clear 85 entry except for NumSec */ + memset(fs->dirbuf + 38, 0, 26); /* Clear C0 entry except for NumName and NameHash */ + fs->dirbuf[XDIR_Attr] = AM_ARC; + st_dword(fs->dirbuf + XDIR_CrtTime, GET_FATTIME()); + fs->dirbuf[XDIR_GenFlags] = 1; + res = store_xdir(&dj); + if (res == FR_OK && fp->obj.sclust != 0) { /* Remove the cluster chain if exist */ + res = remove_chain(&fp->obj, fp->obj.sclust, 0); + fs->last_clst = fp->obj.sclust - 1; /* Reuse the cluster hole */ + } + } else +#endif + { + /* Set directory entry initial state */ + tm = GET_FATTIME(); /* Set created time */ + st_dword(dj.dir + DIR_CrtTime, tm); + st_dword(dj.dir + DIR_ModTime, tm); + cl = ld_clust(fs, dj.dir); /* Get current cluster chain */ + dj.dir[DIR_Attr] = AM_ARC; /* Reset attribute */ + st_clust(fs, dj.dir, 0); /* Reset file allocation info */ + st_dword(dj.dir + DIR_FileSize, 0); + fs->wflag = 1; + if (cl != 0) { /* Remove the cluster chain if exist */ + sc = fs->winsect; + res = remove_chain(&dj.obj, cl, 0); + if (res == FR_OK) { + res = move_window(fs, sc); + fs->last_clst = cl - 1; /* Reuse the cluster hole */ + } + } + } + } + } + else { /* Open an existing file */ + if (res == FR_OK) { /* Is the object exsiting? */ + if (dj.obj.attr & AM_DIR) { /* File open against a directory */ + res = FR_NO_FILE; + } else { + if ((mode & FA_WRITE) && (dj.obj.attr & AM_RDO)) { /* Write mode open against R/O file */ + res = FR_DENIED; + } + } + } + } + if (res == FR_OK) { + if (mode & FA_CREATE_ALWAYS) mode |= FA_MODIFIED; /* Set file change flag if created or overwritten */ + fp->dir_sect = fs->winsect; /* Pointer to the directory entry */ + fp->dir_ptr = dj.dir; +#if FF_FS_LOCK + fp->obj.lockid = inc_share(&dj, (mode & ~FA_READ) ? 1 : 0); /* Lock the file for this session */ + if (fp->obj.lockid == 0) res = FR_INT_ERR; +#endif + } +#else /* R/O configuration */ + if (res == FR_OK) { + if (dj.fn[NSFLAG] & NS_NONAME) { /* Is it origin directory itself? */ + res = FR_INVALID_NAME; + } else { + if (dj.obj.attr & AM_DIR) { /* Is it a directory? */ + res = FR_NO_FILE; + } + } + } +#endif + + if (res == FR_OK) { +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + fp->obj.c_scl = dj.obj.sclust; /* Get containing directory info */ + fp->obj.c_size = ((DWORD)dj.obj.objsize & 0xFFFFFF00) | dj.obj.stat; + fp->obj.c_ofs = dj.blk_ofs; + init_alloc_info(fs, &fp->obj); + } else +#endif + { + fp->obj.sclust = ld_clust(fs, dj.dir); /* Get object allocation info */ + fp->obj.objsize = ld_dword(dj.dir + DIR_FileSize); + } +#if FF_USE_FASTSEEK + fp->cltbl = 0; /* Disable fast seek mode */ +#endif + fp->obj.fs = fs; /* Validate the file object */ + fp->obj.id = fs->id; + fp->flag = mode; /* Set file access mode */ + fp->err = 0; /* Clear error flag */ + fp->sect = 0; /* Invalidate current data sector */ + fp->fptr = 0; /* Set file pointer top of the file */ +#if !FF_FS_READONLY +#if !FF_FS_TINY + memset(fp->buf, 0, sizeof fp->buf); /* Clear sector buffer */ +#endif + if ((mode & FA_SEEKEND) && fp->obj.objsize > 0) { /* Seek to end of file if FA_OPEN_APPEND is specified */ + fp->fptr = fp->obj.objsize; /* Offset to seek */ + bcs = (DWORD)fs->csize * SS(fs); /* Cluster size in byte */ + clst = fp->obj.sclust; /* Follow the cluster chain */ + for (ofs = fp->obj.objsize; res == FR_OK && ofs > bcs; ofs -= bcs) { + clst = get_fat(&fp->obj, clst); + if (clst <= 1) res = FR_INT_ERR; + if (clst == 0xFFFFFFFF) res = FR_DISK_ERR; + } + fp->clust = clst; + if (res == FR_OK && ofs % SS(fs)) { /* Fill sector buffer if not on the sector boundary */ + sc = clst2sect(fs, clst); + if (sc == 0) { + res = FR_INT_ERR; + } else { + fp->sect = sc + (DWORD)(ofs / SS(fs)); +#if !FF_FS_TINY + if (disk_read(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) res = FR_DISK_ERR; +#endif + } + } +#if FF_FS_LOCK + if (res != FR_OK) dec_share(fp->obj.lockid); /* Decrement file open counter if seek failed */ +#endif + } +#endif + } + + FREE_NAMBUF(); + } + + if (res != FR_OK) fp->obj.fs = 0; /* Invalidate file object on error */ + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Read File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_read ( + FIL* fp, /* Open file to be read */ + void* buff, /* Data buffer to store the read data */ + UINT btr, /* Number of bytes to read */ + UINT* br /* Number of bytes read */ +) +{ + FRESULT res; + FATFS *fs; + DWORD clst; + LBA_t sect; + FSIZE_t remain; + UINT rcnt, cc, csect; + BYTE *rbuff = (BYTE*)buff; + + + *br = 0; /* Clear read byte counter */ + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res != FR_OK || (res = (FRESULT)fp->err) != FR_OK) LEAVE_FF(fs, res); /* Check validity */ + if (!(fp->flag & FA_READ)) LEAVE_FF(fs, FR_DENIED); /* Check access mode */ + remain = fp->obj.objsize - fp->fptr; + if (btr > remain) btr = (UINT)remain; /* Truncate btr by remaining bytes */ + + for ( ; btr > 0; btr -= rcnt, *br += rcnt, rbuff += rcnt, fp->fptr += rcnt) { /* Repeat until btr bytes read */ + if (fp->fptr % SS(fs) == 0) { /* On the sector boundary? */ + csect = (UINT)(fp->fptr / SS(fs) & (fs->csize - 1)); /* Sector offset in the cluster */ + if (csect == 0) { /* On the cluster boundary? */ + if (fp->fptr == 0) { /* On the top of the file? */ + clst = fp->obj.sclust; /* Follow cluster chain from the origin */ + } else { /* Middle or end of the file */ +#if FF_USE_FASTSEEK + if (fp->cltbl) { + clst = clmt_clust(fp, fp->fptr); /* Get cluster# from the CLMT */ + } else +#endif + { + clst = get_fat(&fp->obj, fp->clust); /* Follow cluster chain on the FAT */ + } + } + if (clst < 2) ABORT(fs, FR_INT_ERR); + if (clst == 0xFFFFFFFF) ABORT(fs, FR_DISK_ERR); + fp->clust = clst; /* Update current cluster */ + } + sect = clst2sect(fs, fp->clust); /* Get current sector */ + if (sect == 0) ABORT(fs, FR_INT_ERR); + sect += csect; + cc = btr / SS(fs); /* When remaining bytes >= sector size, */ + if (cc > 0) { /* Read maximum contiguous sectors directly */ + if (csect + cc > fs->csize) { /* Clip at cluster boundary */ + cc = fs->csize - csect; + } + if (disk_read(fs->pdrv, rbuff, sect, cc) != RES_OK) ABORT(fs, FR_DISK_ERR); +#if !FF_FS_READONLY && FF_FS_MINIMIZE <= 2 /* Replace one of the read sectors with cached data if it contains a dirty sector */ +#if FF_FS_TINY + if (fs->wflag && fs->winsect - sect < cc) { + memcpy(rbuff + ((fs->winsect - sect) * SS(fs)), fs->win, SS(fs)); + } +#else + if ((fp->flag & FA_DIRTY) && fp->sect - sect < cc) { + memcpy(rbuff + ((fp->sect - sect) * SS(fs)), fp->buf, SS(fs)); + } +#endif +#endif + rcnt = SS(fs) * cc; /* Number of bytes transferred */ + continue; + } +#if !FF_FS_TINY + if (fp->sect != sect) { /* Load data sector if not in cache */ +#if !FF_FS_READONLY + if (fp->flag & FA_DIRTY) { /* Write-back dirty sector cache */ + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif + if (disk_read(fs->pdrv, fp->buf, sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); /* Fill sector cache */ + } +#endif + fp->sect = sect; + } + rcnt = SS(fs) - (UINT)fp->fptr % SS(fs); /* Number of bytes remains in the sector */ + if (rcnt > btr) rcnt = btr; /* Clip it by btr if needed */ +#if FF_FS_TINY + if (move_window(fs, fp->sect) != FR_OK) ABORT(fs, FR_DISK_ERR); /* Move sector window */ + memcpy(rbuff, fs->win + fp->fptr % SS(fs), rcnt); /* Extract partial sector */ +#else + memcpy(rbuff, fp->buf + fp->fptr % SS(fs), rcnt); /* Extract partial sector */ +#endif + } + + LEAVE_FF(fs, FR_OK); +} + + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Write File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_write ( + FIL* fp, /* Open file to be written */ + const void* buff, /* Data to be written */ + UINT btw, /* Number of bytes to write */ + UINT* bw /* Number of bytes written */ +) +{ + FRESULT res; + FATFS *fs; + DWORD clst; + LBA_t sect; + UINT wcnt, cc, csect; + const BYTE *wbuff = (const BYTE*)buff; + + + *bw = 0; /* Clear write byte counter */ + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res != FR_OK || (res = (FRESULT)fp->err) != FR_OK) LEAVE_FF(fs, res); /* Check validity */ + if (!(fp->flag & FA_WRITE)) LEAVE_FF(fs, FR_DENIED); /* Check access mode */ + + /* Check fptr wrap-around (file size cannot reach 4 GiB at FAT volume) */ + if ((!FF_FS_EXFAT || fs->fs_type != FS_EXFAT) && (DWORD)(fp->fptr + btw) < (DWORD)fp->fptr) { + btw = (UINT)(0xFFFFFFFF - (DWORD)fp->fptr); + } + + for ( ; btw > 0; btw -= wcnt, *bw += wcnt, wbuff += wcnt, fp->fptr += wcnt, fp->obj.objsize = (fp->fptr > fp->obj.objsize) ? fp->fptr : fp->obj.objsize) { /* Repeat until all data written */ + if (fp->fptr % SS(fs) == 0) { /* On the sector boundary? */ + csect = (UINT)(fp->fptr / SS(fs)) & (fs->csize - 1); /* Sector offset in the cluster */ + if (csect == 0) { /* On the cluster boundary? */ + if (fp->fptr == 0) { /* On the top of the file? */ + clst = fp->obj.sclust; /* Follow from the origin */ + if (clst == 0) { /* If no cluster is allocated, */ + clst = create_chain(&fp->obj, 0); /* create a new cluster chain */ + } + } else { /* On the middle or end of the file */ +#if FF_USE_FASTSEEK + if (fp->cltbl) { + clst = clmt_clust(fp, fp->fptr); /* Get cluster# from the CLMT */ + } else +#endif + { + clst = create_chain(&fp->obj, fp->clust); /* Follow or stretch cluster chain on the FAT */ + } + } + if (clst == 0) break; /* Could not allocate a new cluster (disk full) */ + if (clst == 1) ABORT(fs, FR_INT_ERR); + if (clst == 0xFFFFFFFF) ABORT(fs, FR_DISK_ERR); + fp->clust = clst; /* Update current cluster */ + if (fp->obj.sclust == 0) fp->obj.sclust = clst; /* Set start cluster if the first write */ + } +#if FF_FS_TINY + if (fs->winsect == fp->sect && sync_window(fs) != FR_OK) ABORT(fs, FR_DISK_ERR); /* Write-back sector cache */ +#else + if (fp->flag & FA_DIRTY) { /* Write-back sector cache */ + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif + sect = clst2sect(fs, fp->clust); /* Get current sector */ + if (sect == 0) ABORT(fs, FR_INT_ERR); + sect += csect; + cc = btw / SS(fs); /* When remaining bytes >= sector size, */ + if (cc > 0) { /* Write maximum contiguous sectors directly */ + if (csect + cc > fs->csize) { /* Clip at cluster boundary */ + cc = fs->csize - csect; + } + if (disk_write(fs->pdrv, wbuff, sect, cc) != RES_OK) ABORT(fs, FR_DISK_ERR); +#if FF_FS_MINIMIZE <= 2 +#if FF_FS_TINY + if (fs->winsect - sect < cc) { /* Refill sector cache if it gets invalidated by the direct write */ + memcpy(fs->win, wbuff + ((fs->winsect - sect) * SS(fs)), SS(fs)); + fs->wflag = 0; + } +#else + if (fp->sect - sect < cc) { /* Refill sector cache if it gets invalidated by the direct write */ + memcpy(fp->buf, wbuff + ((fp->sect - sect) * SS(fs)), SS(fs)); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif +#endif + wcnt = SS(fs) * cc; /* Number of bytes transferred */ + continue; + } +#if FF_FS_TINY + if (fp->fptr >= fp->obj.objsize) { /* Avoid silly cache filling on the growing edge */ + if (sync_window(fs) != FR_OK) ABORT(fs, FR_DISK_ERR); + fs->winsect = sect; + } +#else + if (fp->sect != sect && /* Fill sector cache with file data */ + fp->fptr < fp->obj.objsize && + disk_read(fs->pdrv, fp->buf, sect, 1) != RES_OK) { + ABORT(fs, FR_DISK_ERR); + } +#endif + fp->sect = sect; + } + wcnt = SS(fs) - (UINT)fp->fptr % SS(fs); /* Number of bytes remains in the sector */ + if (wcnt > btw) wcnt = btw; /* Clip it by btw if needed */ +#if FF_FS_TINY + if (move_window(fs, fp->sect) != FR_OK) ABORT(fs, FR_DISK_ERR); /* Move sector window */ + memcpy(fs->win + fp->fptr % SS(fs), wbuff, wcnt); /* Fit data to the sector */ + fs->wflag = 1; +#else + memcpy(fp->buf + fp->fptr % SS(fs), wbuff, wcnt); /* Fit data to the sector */ + fp->flag |= FA_DIRTY; +#endif + } + + fp->flag |= FA_MODIFIED; /* Set file change flag */ + + LEAVE_FF(fs, FR_OK); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Synchronize the File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_sync ( + FIL* fp /* Open file to be synced */ +) +{ + FRESULT res; + FATFS *fs; + DWORD tm; + BYTE *dir; + + + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res == FR_OK) { + if (fp->flag & FA_MODIFIED) { /* Is there any change to the file? */ +#if !FF_FS_TINY + if (fp->flag & FA_DIRTY) { /* Write-back cached data if needed */ + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) LEAVE_FF(fs, FR_DISK_ERR); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif + /* Update the directory entry */ + tm = GET_FATTIME(); /* Modified time */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + res = fill_first_frag(&fp->obj); /* Fill first fragment on the FAT if needed */ + if (res == FR_OK) { + res = fill_last_frag(&fp->obj, fp->clust, 0xFFFFFFFF); /* Fill last fragment on the FAT if needed */ + } + if (res == FR_OK) { + DIR dj; + DEF_NAMBUF + + INIT_NAMBUF(fs); + res = load_obj_xdir(&dj, &fp->obj); /* Load directory entry block */ + if (res == FR_OK) { + fs->dirbuf[XDIR_Attr] |= AM_ARC; /* Set archive attribute to indicate that the file has been changed */ + fs->dirbuf[XDIR_GenFlags] = fp->obj.stat | 1; /* Update file allocation information */ + st_dword(fs->dirbuf + XDIR_FstClus, fp->obj.sclust); /* Update start cluster */ + st_qword(fs->dirbuf + XDIR_FileSize, fp->obj.objsize); /* Update file size */ + st_qword(fs->dirbuf + XDIR_ValidFileSize, fp->obj.objsize); /* (FatFs does not support Valid File Size feature) */ + st_dword(fs->dirbuf + XDIR_ModTime, tm); /* Update modified time */ + fs->dirbuf[XDIR_ModTime10] = 0; + st_dword(fs->dirbuf + XDIR_AccTime, 0); + res = store_xdir(&dj); /* Restore it to the directory */ + if (res == FR_OK) { + res = sync_fs(fs); + fp->flag &= (BYTE)~FA_MODIFIED; + } + } + FREE_NAMBUF(); + } + } else +#endif + { + res = move_window(fs, fp->dir_sect); + if (res == FR_OK) { + dir = fp->dir_ptr; + dir[DIR_Attr] |= AM_ARC; /* Set archive attribute to indicate that the file has been changed */ + st_clust(fp->obj.fs, dir, fp->obj.sclust); /* Update file allocation information */ + st_dword(dir + DIR_FileSize, (DWORD)fp->obj.objsize); /* Update file size */ + st_dword(dir + DIR_ModTime, tm); /* Update modified time */ + st_word(dir + DIR_LstAccDate, 0); + fs->wflag = 1; + res = sync_fs(fs); /* Restore it to the directory */ + fp->flag &= (BYTE)~FA_MODIFIED; + } + } + } + } + + LEAVE_FF(fs, res); +} + +#endif /* !FF_FS_READONLY */ + + + + +/*-----------------------------------------------------------------------*/ +/* Close File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_close ( + FIL* fp /* Open file to be closed */ +) +{ + FRESULT res; + FATFS *fs; + +#if !FF_FS_READONLY + res = f_sync(fp); /* Flush cached data */ + if (res == FR_OK) +#endif + { + res = validate(&fp->obj, &fs); /* Lock volume */ + if (res == FR_OK) { +#if FF_FS_LOCK + res = dec_share(fp->obj.lockid); /* Decrement file open counter */ + if (res == FR_OK) fp->obj.fs = 0; /* Invalidate file object */ +#else + fp->obj.fs = 0; /* Invalidate file object */ +#endif +#if FF_FS_REENTRANT + unlock_volume(fs, FR_OK); /* Unlock volume */ +#endif + } + } + return res; +} + + + + +#if FF_FS_RPATH >= 1 +/*-----------------------------------------------------------------------*/ +/* Change Current Directory or Current Drive, Get Current Directory */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_chdrive ( + const TCHAR* path /* Drive number to set */ +) +{ + int vol; + + + /* Get logical drive number */ + vol = get_ldnumber(&path); + if (vol < 0) return FR_INVALID_DRIVE; + CurrVol = (BYTE)vol; /* Set it as current volume */ + + return FR_OK; +} + + + +FRESULT f_chdir ( + const TCHAR* path /* Pointer to the directory path */ +) +{ +#if FF_STR_VOLUME_ID == 2 + UINT i; +#endif + FRESULT res; + DIR dj; + FATFS *fs; + DEF_NAMBUF + + + /* Get logical drive */ + res = mount_volume(&path, &fs, 0); + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&dj, path); /* Follow the path */ + if (res == FR_OK) { /* Follow completed */ + if (dj.fn[NSFLAG] & NS_NONAME) { /* Is it the start directory itself? */ + fs->cdir = dj.obj.sclust; +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + fs->cdc_scl = dj.obj.c_scl; + fs->cdc_size = dj.obj.c_size; + fs->cdc_ofs = dj.obj.c_ofs; + } +#endif + } else { + if (dj.obj.attr & AM_DIR) { /* It is a sub-directory */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + fs->cdir = ld_dword(fs->dirbuf + XDIR_FstClus); /* Sub-directory cluster */ + fs->cdc_scl = dj.obj.sclust; /* Save containing directory information */ + fs->cdc_size = ((DWORD)dj.obj.objsize & 0xFFFFFF00) | dj.obj.stat; + fs->cdc_ofs = dj.blk_ofs; + } else +#endif + { + fs->cdir = ld_clust(fs, dj.dir); /* Sub-directory cluster */ + } + } else { + res = FR_NO_PATH; /* Reached but a file */ + } + } + } + FREE_NAMBUF(); + if (res == FR_NO_FILE) res = FR_NO_PATH; +#if FF_STR_VOLUME_ID == 2 /* Also current drive is changed if in Unix style volume ID */ + if (res == FR_OK) { + for (i = FF_VOLUMES - 1; i && fs != FatFs[i]; i--) ; /* Set current drive */ + CurrVol = (BYTE)i; + } +#endif + } + + LEAVE_FF(fs, res); +} + + +#if FF_FS_RPATH >= 2 +FRESULT f_getcwd ( + TCHAR* buff, /* Pointer to the directory path */ + UINT len /* Size of buff in unit of TCHAR */ +) +{ + FRESULT res; + DIR dj; + FATFS *fs; + UINT i, n; + DWORD ccl; + TCHAR *tp = buff; +#if FF_VOLUMES >= 2 + UINT vl; +#if FF_STR_VOLUME_ID + const char *vp; +#endif +#endif + FILINFO fno; + DEF_NAMBUF + + + /* Get logical drive */ + buff[0] = 0; /* Set null string to get current volume */ + res = mount_volume((const TCHAR**)&buff, &fs, 0); /* Get current volume */ + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + + /* Follow parent directories and create the path */ + i = len; /* Bottom of buffer (directory stack base) */ + if (!FF_FS_EXFAT || fs->fs_type != FS_EXFAT) { /* (Cannot do getcwd on exFAT and returns root path) */ + dj.obj.sclust = fs->cdir; /* Start to follow upper directory from current directory */ + while ((ccl = dj.obj.sclust) != 0) { /* Repeat while current directory is a sub-directory */ + res = dir_sdi(&dj, 1 * SZDIRE); /* Get parent directory */ + if (res != FR_OK) break; + res = move_window(fs, dj.sect); + if (res != FR_OK) break; + dj.obj.sclust = ld_clust(fs, dj.dir); /* Goto parent directory */ + res = dir_sdi(&dj, 0); + if (res != FR_OK) break; + do { /* Find the entry links to the child directory */ + res = DIR_READ_FILE(&dj); + if (res != FR_OK) break; + if (ccl == ld_clust(fs, dj.dir)) break; /* Found the entry */ + res = dir_next(&dj, 0); + } while (res == FR_OK); + if (res == FR_NO_FILE) res = FR_INT_ERR;/* It cannot be 'not found'. */ + if (res != FR_OK) break; + get_fileinfo(&dj, &fno); /* Get the directory name and push it to the buffer */ + for (n = 0; fno.fname[n]; n++) ; /* Name length */ + if (i < n + 1) { /* Insufficient space to store the path name? */ + res = FR_NOT_ENOUGH_CORE; break; + } + while (n) buff[--i] = fno.fname[--n]; /* Stack the name */ + buff[--i] = '/'; + } + } + if (res == FR_OK) { + if (i == len) buff[--i] = '/'; /* Is it the root-directory? */ +#if FF_VOLUMES >= 2 /* Put drive prefix */ + vl = 0; +#if FF_STR_VOLUME_ID >= 1 /* String volume ID */ + for (n = 0, vp = (const char*)VolumeStr[CurrVol]; vp[n]; n++) ; + if (i >= n + 2) { + if (FF_STR_VOLUME_ID == 2) *tp++ = (TCHAR)'/'; + for (vl = 0; vl < n; *tp++ = (TCHAR)vp[vl], vl++) ; + if (FF_STR_VOLUME_ID == 1) *tp++ = (TCHAR)':'; + vl++; + } +#else /* Numeric volume ID */ + if (i >= 3) { + *tp++ = (TCHAR)'0' + CurrVol; + *tp++ = (TCHAR)':'; + vl = 2; + } +#endif + if (vl == 0) res = FR_NOT_ENOUGH_CORE; +#endif + /* Add current directory path */ + if (res == FR_OK) { + do { /* Copy stacked path string */ + *tp++ = buff[i++]; + } while (i < len); + } + } + FREE_NAMBUF(); + } + + *tp = 0; + LEAVE_FF(fs, res); +} + +#endif /* FF_FS_RPATH >= 2 */ +#endif /* FF_FS_RPATH >= 1 */ + + + +#if FF_FS_MINIMIZE <= 2 +/*-----------------------------------------------------------------------*/ +/* Seek File Read/Write Pointer */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_lseek ( + FIL* fp, /* Pointer to the file object */ + FSIZE_t ofs /* File pointer from top of file */ +) +{ + FRESULT res; + FATFS *fs; + DWORD clst, bcs; + LBA_t nsect; + FSIZE_t ifptr; +#if FF_USE_FASTSEEK + DWORD cl, pcl, ncl, tcl, tlen, ulen; + DWORD *tbl; + LBA_t dsc; +#endif + + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res == FR_OK) res = (FRESULT)fp->err; +#if FF_FS_EXFAT && !FF_FS_READONLY + if (res == FR_OK && fs->fs_type == FS_EXFAT) { + res = fill_last_frag(&fp->obj, fp->clust, 0xFFFFFFFF); /* Fill last fragment on the FAT if needed */ + } +#endif + if (res != FR_OK) LEAVE_FF(fs, res); + +#if FF_USE_FASTSEEK + if (fp->cltbl) { /* Fast seek */ + if (ofs == CREATE_LINKMAP) { /* Create CLMT */ + tbl = fp->cltbl; + tlen = *tbl++; ulen = 2; /* Given table size and required table size */ + cl = fp->obj.sclust; /* Origin of the chain */ + if (cl != 0) { + do { + /* Get a fragment */ + tcl = cl; ncl = 0; ulen += 2; /* Top, length and used items */ + do { + pcl = cl; ncl++; + cl = get_fat(&fp->obj, cl); + if (cl <= 1) ABORT(fs, FR_INT_ERR); + if (cl == 0xFFFFFFFF) ABORT(fs, FR_DISK_ERR); + } while (cl == pcl + 1); + if (ulen <= tlen) { /* Store the length and top of the fragment */ + *tbl++ = ncl; *tbl++ = tcl; + } + } while (cl < fs->n_fatent); /* Repeat until end of chain */ + } + *fp->cltbl = ulen; /* Number of items used */ + if (ulen <= tlen) { + *tbl = 0; /* Terminate table */ + } else { + res = FR_NOT_ENOUGH_CORE; /* Given table size is smaller than required */ + } + } else { /* Fast seek */ + if (ofs > fp->obj.objsize) ofs = fp->obj.objsize; /* Clip offset at the file size */ + fp->fptr = ofs; /* Set file pointer */ + if (ofs > 0) { + fp->clust = clmt_clust(fp, ofs - 1); + dsc = clst2sect(fs, fp->clust); + if (dsc == 0) ABORT(fs, FR_INT_ERR); + dsc += (DWORD)((ofs - 1) / SS(fs)) & (fs->csize - 1); + if (fp->fptr % SS(fs) && dsc != fp->sect) { /* Refill sector cache if needed */ +#if !FF_FS_TINY +#if !FF_FS_READONLY + if (fp->flag & FA_DIRTY) { /* Write-back dirty sector cache */ + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif + if (disk_read(fs->pdrv, fp->buf, dsc, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); /* Load current sector */ +#endif + fp->sect = dsc; + } + } + } + } else +#endif + + /* Normal Seek */ + { +#if FF_FS_EXFAT + if (fs->fs_type != FS_EXFAT && ofs >= 0x100000000) ofs = 0xFFFFFFFF; /* Clip at 4 GiB - 1 if at FATxx */ +#endif + if (ofs > fp->obj.objsize && (FF_FS_READONLY || !(fp->flag & FA_WRITE))) { /* In read-only mode, clip offset with the file size */ + ofs = fp->obj.objsize; + } + ifptr = fp->fptr; + fp->fptr = nsect = 0; + if (ofs > 0) { + bcs = (DWORD)fs->csize * SS(fs); /* Cluster size (byte) */ + if (ifptr > 0 && + (ofs - 1) / bcs >= (ifptr - 1) / bcs) { /* When seek to same or following cluster, */ + fp->fptr = (ifptr - 1) & ~(FSIZE_t)(bcs - 1); /* start from the current cluster */ + ofs -= fp->fptr; + clst = fp->clust; + } else { /* When seek to back cluster, */ + clst = fp->obj.sclust; /* start from the first cluster */ +#if !FF_FS_READONLY + if (clst == 0) { /* If no cluster chain, create a new chain */ + clst = create_chain(&fp->obj, 0); + if (clst == 1) ABORT(fs, FR_INT_ERR); + if (clst == 0xFFFFFFFF) ABORT(fs, FR_DISK_ERR); + fp->obj.sclust = clst; + } +#endif + fp->clust = clst; + } + if (clst != 0) { + while (ofs > bcs) { /* Cluster following loop */ + ofs -= bcs; fp->fptr += bcs; +#if !FF_FS_READONLY + if (fp->flag & FA_WRITE) { /* Check if in write mode or not */ + if (FF_FS_EXFAT && fp->fptr > fp->obj.objsize) { /* No FAT chain object needs correct objsize to generate FAT value */ + fp->obj.objsize = fp->fptr; + fp->flag |= FA_MODIFIED; + } + clst = create_chain(&fp->obj, clst); /* Follow chain with forceed stretch */ + if (clst == 0) { /* Clip file size in case of disk full */ + ofs = 0; break; + } + } else +#endif + { + clst = get_fat(&fp->obj, clst); /* Follow cluster chain if not in write mode */ + } + if (clst == 0xFFFFFFFF) ABORT(fs, FR_DISK_ERR); + if (clst <= 1 || clst >= fs->n_fatent) ABORT(fs, FR_INT_ERR); + fp->clust = clst; + } + fp->fptr += ofs; + if (ofs % SS(fs)) { + nsect = clst2sect(fs, clst); /* Current sector */ + if (nsect == 0) ABORT(fs, FR_INT_ERR); + nsect += (DWORD)(ofs / SS(fs)); + } + } + } + if (!FF_FS_READONLY && fp->fptr > fp->obj.objsize) { /* Set file change flag if the file size is extended */ + fp->obj.objsize = fp->fptr; + fp->flag |= FA_MODIFIED; + } + if (fp->fptr % SS(fs) && nsect != fp->sect) { /* Fill sector cache if needed */ +#if !FF_FS_TINY +#if !FF_FS_READONLY + if (fp->flag & FA_DIRTY) { /* Write-back dirty sector cache */ + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif + if (disk_read(fs->pdrv, fp->buf, nsect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); /* Fill sector cache */ +#endif + fp->sect = nsect; + } + } + + LEAVE_FF(fs, res); +} + + + +#if FF_FS_MINIMIZE <= 1 +/*-----------------------------------------------------------------------*/ +/* Create a Directory Object */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_opendir ( + DIR* dp, /* Pointer to directory object to create */ + const TCHAR* path /* Pointer to the directory path */ +) +{ + FRESULT res; + FATFS *fs; + DEF_NAMBUF + + + if (!dp) return FR_INVALID_OBJECT; + + /* Get logical drive */ + res = mount_volume(&path, &fs, 0); + if (res == FR_OK) { + dp->obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(dp, path); /* Follow the path to the directory */ + if (res == FR_OK) { /* Follow completed */ + if (!(dp->fn[NSFLAG] & NS_NONAME)) { /* It is not the origin directory itself */ + if (dp->obj.attr & AM_DIR) { /* This object is a sub-directory */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + dp->obj.c_scl = dp->obj.sclust; /* Get containing directory inforamation */ + dp->obj.c_size = ((DWORD)dp->obj.objsize & 0xFFFFFF00) | dp->obj.stat; + dp->obj.c_ofs = dp->blk_ofs; + init_alloc_info(fs, &dp->obj); /* Get object allocation info */ + } else +#endif + { + dp->obj.sclust = ld_clust(fs, dp->dir); /* Get object allocation info */ + } + } else { /* This object is a file */ + res = FR_NO_PATH; + } + } + if (res == FR_OK) { + dp->obj.id = fs->id; + res = dir_sdi(dp, 0); /* Rewind directory */ +#if FF_FS_LOCK + if (res == FR_OK) { + if (dp->obj.sclust != 0) { + dp->obj.lockid = inc_share(dp, 0); /* Lock the sub directory */ + if (!dp->obj.lockid) res = FR_TOO_MANY_OPEN_FILES; + } else { + dp->obj.lockid = 0; /* Root directory need not to be locked */ + } + } +#endif + } + } + FREE_NAMBUF(); + if (res == FR_NO_FILE) res = FR_NO_PATH; + } + if (res != FR_OK) dp->obj.fs = 0; /* Invalidate the directory object if function failed */ + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Close Directory */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_closedir ( + DIR *dp /* Pointer to the directory object to be closed */ +) +{ + FRESULT res; + FATFS *fs; + + + res = validate(&dp->obj, &fs); /* Check validity of the file object */ + if (res == FR_OK) { +#if FF_FS_LOCK + if (dp->obj.lockid) res = dec_share(dp->obj.lockid); /* Decrement sub-directory open counter */ + if (res == FR_OK) dp->obj.fs = 0; /* Invalidate directory object */ +#else + dp->obj.fs = 0; /* Invalidate directory object */ +#endif +#if FF_FS_REENTRANT + unlock_volume(fs, FR_OK); /* Unlock volume */ +#endif + } + return res; +} + + + + +/*-----------------------------------------------------------------------*/ +/* Read Directory Entries in Sequence */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_readdir ( + DIR* dp, /* Pointer to the open directory object */ + FILINFO* fno /* Pointer to file information to return */ +) +{ + FRESULT res; + FATFS *fs; + DEF_NAMBUF + + + res = validate(&dp->obj, &fs); /* Check validity of the directory object */ + if (res == FR_OK) { + if (!fno) { + res = dir_sdi(dp, 0); /* Rewind the directory object */ + } else { + INIT_NAMBUF(fs); + res = DIR_READ_FILE(dp); /* Read an item */ + if (res == FR_NO_FILE) res = FR_OK; /* Ignore end of directory */ + if (res == FR_OK) { /* A valid entry is found */ + get_fileinfo(dp, fno); /* Get the object information */ + res = dir_next(dp, 0); /* Increment index for next */ + if (res == FR_NO_FILE) res = FR_OK; /* Ignore end of directory now */ + } + FREE_NAMBUF(); + } + } + LEAVE_FF(fs, res); +} + + + +#if FF_USE_FIND +/*-----------------------------------------------------------------------*/ +/* Find Next File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_findnext ( + DIR* dp, /* Pointer to the open directory object */ + FILINFO* fno /* Pointer to the file information structure */ +) +{ + FRESULT res; + + + for (;;) { + res = f_readdir(dp, fno); /* Get a directory item */ + if (res != FR_OK || !fno || !fno->fname[0]) break; /* Terminate if any error or end of directory */ + if (pattern_match(dp->pat, fno->fname, 0, FIND_RECURS)) break; /* Test for the file name */ +#if FF_USE_LFN && FF_USE_FIND == 2 + if (pattern_match(dp->pat, fno->altname, 0, FIND_RECURS)) break; /* Test for alternative name if exist */ +#endif + } + return res; +} + + + +/*-----------------------------------------------------------------------*/ +/* Find First File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_findfirst ( + DIR* dp, /* Pointer to the blank directory object */ + FILINFO* fno, /* Pointer to the file information structure */ + const TCHAR* path, /* Pointer to the directory to open */ + const TCHAR* pattern /* Pointer to the matching pattern */ +) +{ + FRESULT res; + + + dp->pat = pattern; /* Save pointer to pattern string */ + res = f_opendir(dp, path); /* Open the target directory */ + if (res == FR_OK) { + res = f_findnext(dp, fno); /* Find the first item */ + } + return res; +} + +#endif /* FF_USE_FIND */ + + + +#if FF_FS_MINIMIZE == 0 +/*-----------------------------------------------------------------------*/ +/* Get File Status */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_stat ( + const TCHAR* path, /* Pointer to the file path */ + FILINFO* fno /* Pointer to file information to return */ +) +{ + FRESULT res; + DIR dj; + DEF_NAMBUF + + + /* Get logical drive */ + res = mount_volume(&path, &dj.obj.fs, 0); + if (res == FR_OK) { + INIT_NAMBUF(dj.obj.fs); + res = follow_path(&dj, path); /* Follow the file path */ + if (res == FR_OK) { /* Follow completed */ + if (dj.fn[NSFLAG] & NS_NONAME) { /* It is origin directory */ + res = FR_INVALID_NAME; + } else { /* Found an object */ + if (fno) get_fileinfo(&dj, fno); + } + } + FREE_NAMBUF(); + } + + LEAVE_FF(dj.obj.fs, res); +} + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Get Number of Free Clusters */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_getfree ( + const TCHAR* path, /* Logical drive number */ + DWORD* nclst, /* Pointer to a variable to return number of free clusters */ + FATFS** fatfs /* Pointer to return pointer to corresponding filesystem object */ +) +{ + FRESULT res; + FATFS *fs; + DWORD nfree, clst, stat; + LBA_t sect; + UINT i; + FFOBJID obj; + + + /* Get logical drive */ + res = mount_volume(&path, &fs, 0); + if (res == FR_OK) { + *fatfs = fs; /* Return ptr to the fs object */ + /* If free_clst is valid, return it without full FAT scan */ + if (fs->free_clst <= fs->n_fatent - 2) { + *nclst = fs->free_clst; + } else { + /* Scan FAT to obtain number of free clusters */ + nfree = 0; + if (fs->fs_type == FS_FAT12) { /* FAT12: Scan bit field FAT entries */ + clst = 2; obj.fs = fs; + do { + stat = get_fat(&obj, clst); + if (stat == 0xFFFFFFFF) { + res = FR_DISK_ERR; break; + } + if (stat == 1) { + res = FR_INT_ERR; break; + } + if (stat == 0) nfree++; + } while (++clst < fs->n_fatent); + } else { +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* exFAT: Scan allocation bitmap */ + BYTE bm; + UINT b; + + clst = fs->n_fatent - 2; /* Number of clusters */ + sect = fs->bitbase; /* Bitmap sector */ + i = 0; /* Offset in the sector */ + do { /* Counts numbuer of bits with zero in the bitmap */ + if (i == 0) { /* New sector? */ + res = move_window(fs, sect++); + if (res != FR_OK) break; + } + for (b = 8, bm = ~fs->win[i]; b && clst; b--, clst--) { + nfree += bm & 1; + bm >>= 1; + } + i = (i + 1) % SS(fs); + } while (clst); + } else +#endif + { /* FAT16/32: Scan WORD/DWORD FAT entries */ + clst = fs->n_fatent; /* Number of entries */ + sect = fs->fatbase; /* Top of the FAT */ + i = 0; /* Offset in the sector */ + do { /* Counts numbuer of entries with zero in the FAT */ + if (i == 0) { /* New sector? */ + res = move_window(fs, sect++); + if (res != FR_OK) break; + } + if (fs->fs_type == FS_FAT16) { + if (ld_word(fs->win + i) == 0) nfree++; + i += 2; + } else { + if ((ld_dword(fs->win + i) & 0x0FFFFFFF) == 0) nfree++; + i += 4; + } + i %= SS(fs); + } while (--clst); + } + } + if (res == FR_OK) { /* Update parameters if succeeded */ + *nclst = nfree; /* Return the free clusters */ + fs->free_clst = nfree; /* Now free_clst is valid */ + fs->fsi_flag |= 1; /* FAT32: FSInfo is to be updated */ + } + } + } + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Truncate File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_truncate ( + FIL* fp /* Pointer to the file object */ +) +{ + FRESULT res; + FATFS *fs; + DWORD ncl; + + + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res != FR_OK || (res = (FRESULT)fp->err) != FR_OK) LEAVE_FF(fs, res); + if (!(fp->flag & FA_WRITE)) LEAVE_FF(fs, FR_DENIED); /* Check access mode */ + + if (fp->fptr < fp->obj.objsize) { /* Process when fptr is not on the eof */ + if (fp->fptr == 0) { /* When set file size to zero, remove entire cluster chain */ + res = remove_chain(&fp->obj, fp->obj.sclust, 0); + fp->obj.sclust = 0; + } else { /* When truncate a part of the file, remove remaining clusters */ + ncl = get_fat(&fp->obj, fp->clust); + res = FR_OK; + if (ncl == 0xFFFFFFFF) res = FR_DISK_ERR; + if (ncl == 1) res = FR_INT_ERR; + if (res == FR_OK && ncl < fs->n_fatent) { + res = remove_chain(&fp->obj, ncl, fp->clust); + } + } + fp->obj.objsize = fp->fptr; /* Set file size to current read/write point */ + fp->flag |= FA_MODIFIED; +#if !FF_FS_TINY + if (res == FR_OK && (fp->flag & FA_DIRTY)) { + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) { + res = FR_DISK_ERR; + } else { + fp->flag &= (BYTE)~FA_DIRTY; + } + } +#endif + if (res != FR_OK) ABORT(fs, res); + } + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Delete a File/Directory */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_unlink ( + const TCHAR* path /* Pointer to the file or directory path */ +) +{ + FRESULT res; + FATFS *fs; + DIR dj, sdj; + DWORD dclst = 0; +#if FF_FS_EXFAT + FFOBJID obj; +#endif + DEF_NAMBUF + + + /* Get logical drive */ + res = mount_volume(&path, &fs, FA_WRITE); + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&dj, path); /* Follow the file path */ + if (FF_FS_RPATH && res == FR_OK && (dj.fn[NSFLAG] & NS_DOT)) { + res = FR_INVALID_NAME; /* Cannot remove dot entry */ + } +#if FF_FS_LOCK + if (res == FR_OK) res = chk_share(&dj, 2); /* Check if it is an open object */ +#endif + if (res == FR_OK) { /* The object is accessible */ + if (dj.fn[NSFLAG] & NS_NONAME) { + res = FR_INVALID_NAME; /* Cannot remove the origin directory */ + } else { + if (dj.obj.attr & AM_RDO) { + res = FR_DENIED; /* Cannot remove R/O object */ + } + } + if (res == FR_OK) { +#if FF_FS_EXFAT + obj.fs = fs; + if (fs->fs_type == FS_EXFAT) { + init_alloc_info(fs, &obj); + dclst = obj.sclust; + } else +#endif + { + dclst = ld_clust(fs, dj.dir); + } + if (dj.obj.attr & AM_DIR) { /* Is it a sub-directory? */ +#if FF_FS_RPATH != 0 + if (dclst == fs->cdir) { /* Is it the current directory? */ + res = FR_DENIED; + } else +#endif + { + sdj.obj.fs = fs; /* Open the sub-directory */ + sdj.obj.sclust = dclst; +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + sdj.obj.objsize = obj.objsize; + sdj.obj.stat = obj.stat; + } +#endif + res = dir_sdi(&sdj, 0); + if (res == FR_OK) { + res = DIR_READ_FILE(&sdj); /* Test if the directory is empty */ + if (res == FR_OK) res = FR_DENIED; /* Not empty? */ + if (res == FR_NO_FILE) res = FR_OK; /* Empty? */ + } + } + } + } + if (res == FR_OK) { + res = dir_remove(&dj); /* Remove the directory entry */ + if (res == FR_OK && dclst != 0) { /* Remove the cluster chain if exist */ +#if FF_FS_EXFAT + res = remove_chain(&obj, dclst, 0); +#else + res = remove_chain(&dj.obj, dclst, 0); +#endif + } + if (res == FR_OK) res = sync_fs(fs); + } + } + FREE_NAMBUF(); + } + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Create a Directory */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_mkdir ( + const TCHAR* path /* Pointer to the directory path */ +) +{ + FRESULT res; + FATFS *fs; + DIR dj; + FFOBJID sobj; + DWORD dcl, pcl, tm; + DEF_NAMBUF + + + res = mount_volume(&path, &fs, FA_WRITE); /* Get logical drive */ + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&dj, path); /* Follow the file path */ + if (res == FR_OK) res = FR_EXIST; /* Name collision? */ + if (FF_FS_RPATH && res == FR_NO_FILE && (dj.fn[NSFLAG] & NS_DOT)) { /* Invalid name? */ + res = FR_INVALID_NAME; + } + if (res == FR_NO_FILE) { /* It is clear to create a new directory */ + sobj.fs = fs; /* New object id to create a new chain */ + dcl = create_chain(&sobj, 0); /* Allocate a cluster for the new directory */ + res = FR_OK; + if (dcl == 0) res = FR_DENIED; /* No space to allocate a new cluster? */ + if (dcl == 1) res = FR_INT_ERR; /* Any insanity? */ + if (dcl == 0xFFFFFFFF) res = FR_DISK_ERR; /* Disk error? */ + tm = GET_FATTIME(); + if (res == FR_OK) { + res = dir_clear(fs, dcl); /* Clean up the new table */ + if (res == FR_OK) { + if (!FF_FS_EXFAT || fs->fs_type != FS_EXFAT) { /* Create dot entries (FAT only) */ + memset(fs->win + DIR_Name, ' ', 11); /* Create "." entry */ + fs->win[DIR_Name] = '.'; + fs->win[DIR_Attr] = AM_DIR; + st_dword(fs->win + DIR_ModTime, tm); + st_clust(fs, fs->win, dcl); + memcpy(fs->win + SZDIRE, fs->win, SZDIRE); /* Create ".." entry */ + fs->win[SZDIRE + 1] = '.'; pcl = dj.obj.sclust; + st_clust(fs, fs->win + SZDIRE, pcl); + fs->wflag = 1; + } + res = dir_register(&dj); /* Register the object to the parent directoy */ + } + } + if (res == FR_OK) { +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* Initialize directory entry block */ + st_dword(fs->dirbuf + XDIR_ModTime, tm); /* Created time */ + st_dword(fs->dirbuf + XDIR_FstClus, dcl); /* Table start cluster */ + st_dword(fs->dirbuf + XDIR_FileSize, (DWORD)fs->csize * SS(fs)); /* Directory size needs to be valid */ + st_dword(fs->dirbuf + XDIR_ValidFileSize, (DWORD)fs->csize * SS(fs)); + fs->dirbuf[XDIR_GenFlags] = 3; /* Initialize the object flag */ + fs->dirbuf[XDIR_Attr] = AM_DIR; /* Attribute */ + res = store_xdir(&dj); + } else +#endif + { + st_dword(dj.dir + DIR_ModTime, tm); /* Created time */ + st_clust(fs, dj.dir, dcl); /* Table start cluster */ + dj.dir[DIR_Attr] = AM_DIR; /* Attribute */ + fs->wflag = 1; + } + if (res == FR_OK) { + res = sync_fs(fs); + } + } else { + remove_chain(&sobj, dcl, 0); /* Could not register, remove the allocated cluster */ + } + } + FREE_NAMBUF(); + } + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Rename a File/Directory */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_rename ( + const TCHAR* path_old, /* Pointer to the object name to be renamed */ + const TCHAR* path_new /* Pointer to the new name */ +) +{ + FRESULT res; + FATFS *fs; + DIR djo, djn; + BYTE buf[FF_FS_EXFAT ? SZDIRE * 2 : SZDIRE], *dir; + LBA_t sect; + DEF_NAMBUF + + + get_ldnumber(&path_new); /* Snip the drive number of new name off */ + res = mount_volume(&path_old, &fs, FA_WRITE); /* Get logical drive of the old object */ + if (res == FR_OK) { + djo.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&djo, path_old); /* Check old object */ + if (res == FR_OK && (djo.fn[NSFLAG] & (NS_DOT | NS_NONAME))) res = FR_INVALID_NAME; /* Check validity of name */ +#if FF_FS_LOCK + if (res == FR_OK) { + res = chk_share(&djo, 2); + } +#endif + if (res == FR_OK) { /* Object to be renamed is found */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* At exFAT volume */ + BYTE nf, nn; + WORD nh; + + memcpy(buf, fs->dirbuf, SZDIRE * 2); /* Save 85+C0 entry of old object */ + memcpy(&djn, &djo, sizeof djo); + res = follow_path(&djn, path_new); /* Make sure if new object name is not in use */ + if (res == FR_OK) { /* Is new name already in use by any other object? */ + res = (djn.obj.sclust == djo.obj.sclust && djn.dptr == djo.dptr) ? FR_NO_FILE : FR_EXIST; + } + if (res == FR_NO_FILE) { /* It is a valid path and no name collision */ + res = dir_register(&djn); /* Register the new entry */ + if (res == FR_OK) { + nf = fs->dirbuf[XDIR_NumSec]; nn = fs->dirbuf[XDIR_NumName]; + nh = ld_word(fs->dirbuf + XDIR_NameHash); + memcpy(fs->dirbuf, buf, SZDIRE * 2); /* Restore 85+C0 entry */ + fs->dirbuf[XDIR_NumSec] = nf; fs->dirbuf[XDIR_NumName] = nn; + st_word(fs->dirbuf + XDIR_NameHash, nh); + if (!(fs->dirbuf[XDIR_Attr] & AM_DIR)) fs->dirbuf[XDIR_Attr] |= AM_ARC; /* Set archive attribute if it is a file */ +/* Start of critical section where an interruption can cause a cross-link */ + res = store_xdir(&djn); + } + } + } else +#endif + { /* At FAT/FAT32 volume */ + memcpy(buf, djo.dir, SZDIRE); /* Save directory entry of the object */ + memcpy(&djn, &djo, sizeof (DIR)); /* Duplicate the directory object */ + res = follow_path(&djn, path_new); /* Make sure if new object name is not in use */ + if (res == FR_OK) { /* Is new name already in use by any other object? */ + res = (djn.obj.sclust == djo.obj.sclust && djn.dptr == djo.dptr) ? FR_NO_FILE : FR_EXIST; + } + if (res == FR_NO_FILE) { /* It is a valid path and no name collision */ + res = dir_register(&djn); /* Register the new entry */ + if (res == FR_OK) { + dir = djn.dir; /* Copy directory entry of the object except name */ + memcpy(dir + 13, buf + 13, SZDIRE - 13); + dir[DIR_Attr] = buf[DIR_Attr]; + if (!(dir[DIR_Attr] & AM_DIR)) dir[DIR_Attr] |= AM_ARC; /* Set archive attribute if it is a file */ + fs->wflag = 1; + if ((dir[DIR_Attr] & AM_DIR) && djo.obj.sclust != djn.obj.sclust) { /* Update .. entry in the sub-directory if needed */ + sect = clst2sect(fs, ld_clust(fs, dir)); + if (sect == 0) { + res = FR_INT_ERR; + } else { +/* Start of critical section where an interruption can cause a cross-link */ + res = move_window(fs, sect); + dir = fs->win + SZDIRE * 1; /* Ptr to .. entry */ + if (res == FR_OK && dir[1] == '.') { + st_clust(fs, dir, djn.obj.sclust); + fs->wflag = 1; + } + } + } + } + } + } + if (res == FR_OK) { + res = dir_remove(&djo); /* Remove old entry */ + if (res == FR_OK) { + res = sync_fs(fs); + } + } +/* End of the critical section */ + } + FREE_NAMBUF(); + } + + LEAVE_FF(fs, res); +} + +#endif /* !FF_FS_READONLY */ +#endif /* FF_FS_MINIMIZE == 0 */ +#endif /* FF_FS_MINIMIZE <= 1 */ +#endif /* FF_FS_MINIMIZE <= 2 */ + + + +#if FF_USE_CHMOD && !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Change Attribute */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_chmod ( + const TCHAR* path, /* Pointer to the file path */ + BYTE attr, /* Attribute bits */ + BYTE mask /* Attribute mask to change */ +) +{ + FRESULT res; + FATFS *fs; + DIR dj; + DEF_NAMBUF + + + res = mount_volume(&path, &fs, FA_WRITE); /* Get logical drive */ + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&dj, path); /* Follow the file path */ + if (res == FR_OK && (dj.fn[NSFLAG] & (NS_DOT | NS_NONAME))) res = FR_INVALID_NAME; /* Check object validity */ + if (res == FR_OK) { + mask &= AM_RDO|AM_HID|AM_SYS|AM_ARC; /* Valid attribute mask */ +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + fs->dirbuf[XDIR_Attr] = (attr & mask) | (fs->dirbuf[XDIR_Attr] & (BYTE)~mask); /* Apply attribute change */ + res = store_xdir(&dj); + } else +#endif + { + dj.dir[DIR_Attr] = (attr & mask) | (dj.dir[DIR_Attr] & (BYTE)~mask); /* Apply attribute change */ + fs->wflag = 1; + } + if (res == FR_OK) { + res = sync_fs(fs); + } + } + FREE_NAMBUF(); + } + + LEAVE_FF(fs, res); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Change Timestamp */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_utime ( + const TCHAR* path, /* Pointer to the file/directory name */ + const FILINFO* fno /* Pointer to the timestamp to be set */ +) +{ + FRESULT res; + FATFS *fs; + DIR dj; + DEF_NAMBUF + + + res = mount_volume(&path, &fs, FA_WRITE); /* Get logical drive */ + if (res == FR_OK) { + dj.obj.fs = fs; + INIT_NAMBUF(fs); + res = follow_path(&dj, path); /* Follow the file path */ + if (res == FR_OK && (dj.fn[NSFLAG] & (NS_DOT | NS_NONAME))) res = FR_INVALID_NAME; /* Check object validity */ + if (res == FR_OK) { +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + st_dword(fs->dirbuf + XDIR_ModTime, (DWORD)fno->fdate << 16 | fno->ftime); + res = store_xdir(&dj); + } else +#endif + { + st_dword(dj.dir + DIR_ModTime, (DWORD)fno->fdate << 16 | fno->ftime); + fs->wflag = 1; + } + if (res == FR_OK) { + res = sync_fs(fs); + } + } + FREE_NAMBUF(); + } + + LEAVE_FF(fs, res); +} + +#endif /* FF_USE_CHMOD && !FF_FS_READONLY */ + + + +#if FF_USE_LABEL +/*-----------------------------------------------------------------------*/ +/* Get Volume Label */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_getlabel ( + const TCHAR* path, /* Logical drive number */ + TCHAR* label, /* Buffer to store the volume label */ + DWORD* vsn /* Variable to store the volume serial number */ +) +{ + FRESULT res; + FATFS *fs; + DIR dj; + UINT si, di; + WCHAR wc; + + /* Get logical drive */ + res = mount_volume(&path, &fs, 0); + + /* Get volume label */ + if (res == FR_OK && label) { + dj.obj.fs = fs; dj.obj.sclust = 0; /* Open root directory */ + res = dir_sdi(&dj, 0); + if (res == FR_OK) { + res = DIR_READ_LABEL(&dj); /* Find a volume label entry */ + if (res == FR_OK) { +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + WCHAR hs; + UINT nw; + + for (si = di = hs = 0; si < dj.dir[XDIR_NumLabel]; si++) { /* Extract volume label from 83 entry */ + wc = ld_word(dj.dir + XDIR_Label + si * 2); + if (hs == 0 && IsSurrogate(wc)) { /* Is the code a surrogate? */ + hs = wc; continue; + } + nw = put_utf((DWORD)hs << 16 | wc, &label[di], 4); /* Store it in API encoding */ + if (nw == 0) { /* Encode error? */ + di = 0; break; + } + di += nw; + hs = 0; + } + if (hs != 0) di = 0; /* Broken surrogate pair? */ + label[di] = 0; + } else +#endif + { + si = di = 0; /* Extract volume label from AM_VOL entry */ + while (si < 11) { + wc = dj.dir[si++]; +#if FF_USE_LFN && FF_LFN_UNICODE >= 1 /* Unicode output */ + if (dbc_1st((BYTE)wc) && si < 11) wc = wc << 8 | dj.dir[si++]; /* Is it a DBC? */ + wc = ff_oem2uni(wc, CODEPAGE); /* Convert it into Unicode */ + if (wc == 0) { /* Invalid char in current code page? */ + di = 0; break; + } + di += put_utf(wc, &label[di], 4); /* Store it in Unicode */ +#else /* ANSI/OEM output */ + label[di++] = (TCHAR)wc; +#endif + } + do { /* Truncate trailing spaces */ + label[di] = 0; + if (di == 0) break; + } while (label[--di] == ' '); + } + } + } + if (res == FR_NO_FILE) { /* No label entry and return nul string */ + label[0] = 0; + res = FR_OK; + } + } + + /* Get volume serial number */ + if (res == FR_OK && vsn) { + res = move_window(fs, fs->volbase); + if (res == FR_OK) { + switch (fs->fs_type) { + case FS_EXFAT: + di = BPB_VolIDEx; + break; + + case FS_FAT32: + di = BS_VolID32; + break; + + default: + di = BS_VolID; + } + *vsn = ld_dword(fs->win + di); + } + } + + LEAVE_FF(fs, res); +} + + + +#if !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Set Volume Label */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_setlabel ( + const TCHAR* label /* Volume label to set with heading logical drive number */ +) +{ + FRESULT res; + FATFS *fs; + DIR dj; + BYTE dirvn[22]; + UINT di; + WCHAR wc; + static const char badchr[18] = "+.,;=[]" "/*:<>|\\\"\?\x7F"; /* [0..16] for FAT, [7..16] for exFAT */ +#if FF_USE_LFN + DWORD dc; +#endif + + /* Get logical drive */ + res = mount_volume(&label, &fs, FA_WRITE); + if (res != FR_OK) LEAVE_FF(fs, res); + +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { /* On the exFAT volume */ + memset(dirvn, 0, 22); + di = 0; + while ((UINT)*label >= ' ') { /* Create volume label */ + dc = tchar2uni(&label); /* Get a Unicode character */ + if (dc >= 0x10000) { + if (dc == 0xFFFFFFFF || di >= 10) { /* Wrong surrogate or buffer overflow */ + dc = 0; + } else { + st_word(dirvn + di * 2, (WCHAR)(dc >> 16)); di++; + } + } + if (dc == 0 || strchr(&badchr[7], (int)dc) || di >= 11) { /* Check validity of the volume label */ + LEAVE_FF(fs, FR_INVALID_NAME); + } + st_word(dirvn + di * 2, (WCHAR)dc); di++; + } + } else +#endif + { /* On the FAT/FAT32 volume */ + memset(dirvn, ' ', 11); + di = 0; + while ((UINT)*label >= ' ') { /* Create volume label */ +#if FF_USE_LFN + dc = tchar2uni(&label); + wc = (dc < 0x10000) ? ff_uni2oem(ff_wtoupper(dc), CODEPAGE) : 0; +#else /* ANSI/OEM input */ + wc = (BYTE)*label++; + if (dbc_1st((BYTE)wc)) wc = dbc_2nd((BYTE)*label) ? wc << 8 | (BYTE)*label++ : 0; + if (IsLower(wc)) wc -= 0x20; /* To upper ASCII characters */ +#if FF_CODE_PAGE == 0 + if (ExCvt && wc >= 0x80) wc = ExCvt[wc - 0x80]; /* To upper extended characters (SBCS cfg) */ +#elif FF_CODE_PAGE < 900 + if (wc >= 0x80) wc = ExCvt[wc - 0x80]; /* To upper extended characters (SBCS cfg) */ +#endif +#endif + if (wc == 0 || strchr(&badchr[0], (int)wc) || di >= (UINT)((wc >= 0x100) ? 10 : 11)) { /* Reject invalid characters for volume label */ + LEAVE_FF(fs, FR_INVALID_NAME); + } + if (wc >= 0x100) dirvn[di++] = (BYTE)(wc >> 8); + dirvn[di++] = (BYTE)wc; + } + if (dirvn[0] == DDEM) LEAVE_FF(fs, FR_INVALID_NAME); /* Reject illegal name (heading DDEM) */ + while (di && dirvn[di - 1] == ' ') di--; /* Snip trailing spaces */ + } + + /* Set volume label */ + dj.obj.fs = fs; dj.obj.sclust = 0; /* Open root directory */ + res = dir_sdi(&dj, 0); + if (res == FR_OK) { + res = DIR_READ_LABEL(&dj); /* Get volume label entry */ + if (res == FR_OK) { + if (FF_FS_EXFAT && fs->fs_type == FS_EXFAT) { + dj.dir[XDIR_NumLabel] = (BYTE)di; /* Change the volume label */ + memcpy(dj.dir + XDIR_Label, dirvn, 22); + } else { + if (di != 0) { + memcpy(dj.dir, dirvn, 11); /* Change the volume label */ + } else { + dj.dir[DIR_Name] = DDEM; /* Remove the volume label */ + } + } + fs->wflag = 1; + res = sync_fs(fs); + } else { /* No volume label entry or an error */ + if (res == FR_NO_FILE) { + res = FR_OK; + if (di != 0) { /* Create a volume label entry */ + res = dir_alloc(&dj, 1); /* Allocate an entry */ + if (res == FR_OK) { + memset(dj.dir, 0, SZDIRE); /* Clean the entry */ + if (FF_FS_EXFAT && fs->fs_type == FS_EXFAT) { + dj.dir[XDIR_Type] = ET_VLABEL; /* Create volume label entry */ + dj.dir[XDIR_NumLabel] = (BYTE)di; + memcpy(dj.dir + XDIR_Label, dirvn, 22); + } else { + dj.dir[DIR_Attr] = AM_VOL; /* Create volume label entry */ + memcpy(dj.dir, dirvn, 11); + } + fs->wflag = 1; + res = sync_fs(fs); + } + } + } + } + } + + LEAVE_FF(fs, res); +} + +#endif /* !FF_FS_READONLY */ +#endif /* FF_USE_LABEL */ + + + +#if FF_USE_EXPAND && !FF_FS_READONLY +/*-----------------------------------------------------------------------*/ +/* Allocate a Contiguous Blocks to the File */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_expand ( + FIL* fp, /* Pointer to the file object */ + FSIZE_t fsz, /* File size to be expanded to */ + BYTE opt /* Operation mode 0:Find and prepare or 1:Find and allocate */ +) +{ + FRESULT res; + FATFS *fs; + DWORD n, clst, stcl, scl, ncl, tcl, lclst; + + + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res != FR_OK || (res = (FRESULT)fp->err) != FR_OK) LEAVE_FF(fs, res); + if (fsz == 0 || fp->obj.objsize != 0 || !(fp->flag & FA_WRITE)) LEAVE_FF(fs, FR_DENIED); +#if FF_FS_EXFAT + if (fs->fs_type != FS_EXFAT && fsz >= 0x100000000) LEAVE_FF(fs, FR_DENIED); /* Check if in size limit */ +#endif + n = (DWORD)fs->csize * SS(fs); /* Cluster size */ + tcl = (DWORD)(fsz / n) + ((fsz & (n - 1)) ? 1 : 0); /* Number of clusters required */ + stcl = fs->last_clst; lclst = 0; + if (stcl < 2 || stcl >= fs->n_fatent) stcl = 2; + +#if FF_FS_EXFAT + if (fs->fs_type == FS_EXFAT) { + scl = find_bitmap(fs, stcl, tcl); /* Find a contiguous cluster block */ + if (scl == 0) res = FR_DENIED; /* No contiguous cluster block was found */ + if (scl == 0xFFFFFFFF) res = FR_DISK_ERR; + if (res == FR_OK) { /* A contiguous free area is found */ + if (opt) { /* Allocate it now */ + res = change_bitmap(fs, scl, tcl, 1); /* Mark the cluster block 'in use' */ + lclst = scl + tcl - 1; + } else { /* Set it as suggested point for next allocation */ + lclst = scl - 1; + } + } + } else +#endif + { + scl = clst = stcl; ncl = 0; + for (;;) { /* Find a contiguous cluster block */ + n = get_fat(&fp->obj, clst); + if (++clst >= fs->n_fatent) clst = 2; + if (n == 1) { + res = FR_INT_ERR; break; + } + if (n == 0xFFFFFFFF) { + res = FR_DISK_ERR; break; + } + if (n == 0) { /* Is it a free cluster? */ + if (++ncl == tcl) break; /* Break if a contiguous cluster block is found */ + } else { + scl = clst; ncl = 0; /* Not a free cluster */ + } + if (clst == stcl) { /* No contiguous cluster? */ + res = FR_DENIED; break; + } + } + if (res == FR_OK) { /* A contiguous free area is found */ + if (opt) { /* Allocate it now */ + for (clst = scl, n = tcl; n; clst++, n--) { /* Create a cluster chain on the FAT */ + res = put_fat(fs, clst, (n == 1) ? 0xFFFFFFFF : clst + 1); + if (res != FR_OK) break; + lclst = clst; + } + } else { /* Set it as suggested point for next allocation */ + lclst = scl - 1; + } + } + } + + if (res == FR_OK) { + fs->last_clst = lclst; /* Set suggested start cluster to start next */ + if (opt) { /* Is it allocated now? */ + fp->obj.sclust = scl; /* Update object allocation information */ + fp->obj.objsize = fsz; + if (FF_FS_EXFAT) fp->obj.stat = 2; /* Set status 'contiguous chain' */ + fp->flag |= FA_MODIFIED; + if (fs->free_clst <= fs->n_fatent - 2) { /* Update FSINFO */ + fs->free_clst -= tcl; + fs->fsi_flag |= 1; + } + } + } + + LEAVE_FF(fs, res); +} + +#endif /* FF_USE_EXPAND && !FF_FS_READONLY */ + + + +#if FF_USE_FORWARD +/*-----------------------------------------------------------------------*/ +/* Forward Data to the Stream Directly */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_forward ( + FIL* fp, /* Pointer to the file object */ + UINT (*func)(const BYTE*,UINT), /* Pointer to the streaming function */ + UINT btf, /* Number of bytes to forward */ + UINT* bf /* Pointer to number of bytes forwarded */ +) +{ + FRESULT res; + FATFS *fs; + DWORD clst; + LBA_t sect; + FSIZE_t remain; + UINT rcnt, csect; + BYTE *dbuf; + + + *bf = 0; /* Clear transfer byte counter */ + res = validate(&fp->obj, &fs); /* Check validity of the file object */ + if (res != FR_OK || (res = (FRESULT)fp->err) != FR_OK) LEAVE_FF(fs, res); + if (!(fp->flag & FA_READ)) LEAVE_FF(fs, FR_DENIED); /* Check access mode */ + + remain = fp->obj.objsize - fp->fptr; + if (btf > remain) btf = (UINT)remain; /* Truncate btf by remaining bytes */ + + for ( ; btf > 0 && (*func)(0, 0); fp->fptr += rcnt, *bf += rcnt, btf -= rcnt) { /* Repeat until all data transferred or stream goes busy */ + csect = (UINT)(fp->fptr / SS(fs) & (fs->csize - 1)); /* Sector offset in the cluster */ + if (fp->fptr % SS(fs) == 0) { /* On the sector boundary? */ + if (csect == 0) { /* On the cluster boundary? */ + clst = (fp->fptr == 0) ? /* On the top of the file? */ + fp->obj.sclust : get_fat(&fp->obj, fp->clust); + if (clst <= 1) ABORT(fs, FR_INT_ERR); + if (clst == 0xFFFFFFFF) ABORT(fs, FR_DISK_ERR); + fp->clust = clst; /* Update current cluster */ + } + } + sect = clst2sect(fs, fp->clust); /* Get current data sector */ + if (sect == 0) ABORT(fs, FR_INT_ERR); + sect += csect; +#if FF_FS_TINY + if (move_window(fs, sect) != FR_OK) ABORT(fs, FR_DISK_ERR); /* Move sector window to the file data */ + dbuf = fs->win; +#else + if (fp->sect != sect) { /* Fill sector cache with file data */ +#if !FF_FS_READONLY + if (fp->flag & FA_DIRTY) { /* Write-back dirty sector cache */ + if (disk_write(fs->pdrv, fp->buf, fp->sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); + fp->flag &= (BYTE)~FA_DIRTY; + } +#endif + if (disk_read(fs->pdrv, fp->buf, sect, 1) != RES_OK) ABORT(fs, FR_DISK_ERR); + } + dbuf = fp->buf; +#endif + fp->sect = sect; + rcnt = SS(fs) - (UINT)fp->fptr % SS(fs); /* Number of bytes remains in the sector */ + if (rcnt > btf) rcnt = btf; /* Clip it by btr if needed */ + rcnt = (*func)(dbuf + ((UINT)fp->fptr % SS(fs)), rcnt); /* Forward the file data */ + if (rcnt == 0) ABORT(fs, FR_INT_ERR); + } + + LEAVE_FF(fs, FR_OK); +} +#endif /* FF_USE_FORWARD */ + + + +#if !FF_FS_READONLY && FF_USE_MKFS +/*-----------------------------------------------------------------------*/ +/* Create FAT/exFAT volume (with sub-functions) */ +/*-----------------------------------------------------------------------*/ + +#define N_SEC_TRACK 63 /* Sectors per track for determination of drive CHS */ +#define GPT_ALIGN 0x100000 /* Alignment of partitions in GPT [byte] (>=128KB) */ +#define GPT_ITEMS 128 /* Number of GPT table size (>=128, sector aligned) */ + + +/* Create partitions on the physical drive in format of MBR or GPT */ + +static FRESULT create_partition ( + BYTE drv, /* Physical drive number */ + const LBA_t plst[], /* Partition list */ + BYTE sys, /* System ID for each partition (for only MBR) */ + BYTE *buf /* Working buffer for a sector */ +) +{ + UINT i, cy; + LBA_t sz_drv; + DWORD sz_drv32, nxt_alloc32, sz_part32; + BYTE *pte; + BYTE hd, n_hd, sc, n_sc; + + /* Get physical drive size */ + if (disk_ioctl(drv, GET_SECTOR_COUNT, &sz_drv) != RES_OK) return FR_DISK_ERR; + +#if FF_LBA64 + if (sz_drv >= FF_MIN_GPT) { /* Create partitions in GPT format */ + WORD ss; + UINT sz_ptbl, pi, si, ofs; + DWORD bcc, rnd, align; + QWORD nxt_alloc, sz_part, sz_pool, top_bpt; + static const BYTE gpt_mbr[16] = {0x00, 0x00, 0x02, 0x00, 0xEE, 0xFE, 0xFF, 0x00, 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF}; + +#if FF_MAX_SS != FF_MIN_SS + if (disk_ioctl(drv, GET_SECTOR_SIZE, &ss) != RES_OK) return FR_DISK_ERR; /* Get sector size */ + if (ss > FF_MAX_SS || ss < FF_MIN_SS || (ss & (ss - 1))) return FR_DISK_ERR; +#else + ss = FF_MAX_SS; +#endif + rnd = (DWORD)sz_drv + GET_FATTIME(); /* Random seed */ + align = GPT_ALIGN / ss; /* Partition alignment for GPT [sector] */ + sz_ptbl = GPT_ITEMS * SZ_GPTE / ss; /* Size of partition table [sector] */ + top_bpt = sz_drv - sz_ptbl - 1; /* Backup partition table start sector */ + nxt_alloc = 2 + sz_ptbl; /* First allocatable sector */ + sz_pool = top_bpt - nxt_alloc; /* Size of allocatable area */ + bcc = 0xFFFFFFFF; sz_part = 1; + pi = si = 0; /* partition table index, size table index */ + do { + if (pi * SZ_GPTE % ss == 0) memset(buf, 0, ss); /* Clean the buffer if needed */ + if (sz_part != 0) { /* Is the size table not termintated? */ + nxt_alloc = (nxt_alloc + align - 1) & ((QWORD)0 - align); /* Align partition start */ + sz_part = plst[si++]; /* Get a partition size */ + if (sz_part <= 100) { /* Is the size in percentage? */ + sz_part = sz_pool * sz_part / 100; + sz_part = (sz_part + align - 1) & ((QWORD)0 - align); /* Align partition end (only if in percentage) */ + } + if (nxt_alloc + sz_part > top_bpt) { /* Clip the size at end of the pool */ + sz_part = (nxt_alloc < top_bpt) ? top_bpt - nxt_alloc : 0; + } + } + if (sz_part != 0) { /* Add a partition? */ + ofs = pi * SZ_GPTE % ss; + memcpy(buf + ofs + GPTE_PtGuid, GUID_MS_Basic, 16); /* Set partition GUID (Microsoft Basic Data) */ + rnd = make_rand(rnd, buf + ofs + GPTE_UpGuid, 16); /* Set unique partition GUID */ + st_qword(buf + ofs + GPTE_FstLba, nxt_alloc); /* Set partition start sector */ + st_qword(buf + ofs + GPTE_LstLba, nxt_alloc + sz_part - 1); /* Set partition end sector */ + nxt_alloc += sz_part; /* Next allocatable sector */ + } + if ((pi + 1) * SZ_GPTE % ss == 0) { /* Write the buffer if it is filled up */ + for (i = 0; i < ss; bcc = crc32(bcc, buf[i++])) ; /* Calculate table check sum */ + if (disk_write(drv, buf, 2 + pi * SZ_GPTE / ss, 1) != RES_OK) return FR_DISK_ERR; /* Write to primary table */ + if (disk_write(drv, buf, top_bpt + pi * SZ_GPTE / ss, 1) != RES_OK) return FR_DISK_ERR; /* Write to secondary table */ + } + } while (++pi < GPT_ITEMS); + + /* Create primary GPT header */ + memset(buf, 0, ss); + memcpy(buf + GPTH_Sign, "EFI PART" "\0\0\1\0" "\x5C\0\0", 16); /* Signature, version (1.0) and size (92) */ + st_dword(buf + GPTH_PtBcc, ~bcc); /* Table check sum */ + st_qword(buf + GPTH_CurLba, 1); /* LBA of this header */ + st_qword(buf + GPTH_BakLba, sz_drv - 1); /* LBA of secondary header */ + st_qword(buf + GPTH_FstLba, 2 + sz_ptbl); /* LBA of first allocatable sector */ + st_qword(buf + GPTH_LstLba, top_bpt - 1); /* LBA of last allocatable sector */ + st_dword(buf + GPTH_PteSize, SZ_GPTE); /* Size of a table entry */ + st_dword(buf + GPTH_PtNum, GPT_ITEMS); /* Number of table entries */ + st_dword(buf + GPTH_PtOfs, 2); /* LBA of this table */ + rnd = make_rand(rnd, buf + GPTH_DskGuid, 16); /* Disk GUID */ + for (i = 0, bcc= 0xFFFFFFFF; i < 92; bcc = crc32(bcc, buf[i++])) ; /* Calculate header check sum */ + st_dword(buf + GPTH_Bcc, ~bcc); /* Header check sum */ + if (disk_write(drv, buf, 1, 1) != RES_OK) return FR_DISK_ERR; + + /* Create secondary GPT header */ + st_qword(buf + GPTH_CurLba, sz_drv - 1); /* LBA of this header */ + st_qword(buf + GPTH_BakLba, 1); /* LBA of primary header */ + st_qword(buf + GPTH_PtOfs, top_bpt); /* LBA of this table */ + st_dword(buf + GPTH_Bcc, 0); + for (i = 0, bcc= 0xFFFFFFFF; i < 92; bcc = crc32(bcc, buf[i++])) ; /* Calculate header check sum */ + st_dword(buf + GPTH_Bcc, ~bcc); /* Header check sum */ + if (disk_write(drv, buf, sz_drv - 1, 1) != RES_OK) return FR_DISK_ERR; + + /* Create protective MBR */ + memset(buf, 0, ss); + memcpy(buf + MBR_Table, gpt_mbr, 16); /* Create a GPT partition */ + st_word(buf + BS_55AA, 0xAA55); + if (disk_write(drv, buf, 0, 1) != RES_OK) return FR_DISK_ERR; + + } else +#endif + { /* Create partitions in MBR format */ + sz_drv32 = (DWORD)sz_drv; + n_sc = N_SEC_TRACK; /* Determine drive CHS without any consideration of the drive geometry */ + for (n_hd = 8; n_hd != 0 && sz_drv32 / n_hd / n_sc > 1024; n_hd *= 2) ; + if (n_hd == 0) n_hd = 255; /* Number of heads needs to be <256 */ + + memset(buf, 0, FF_MAX_SS); /* Clear MBR */ + pte = buf + MBR_Table; /* Partition table in the MBR */ + for (i = 0, nxt_alloc32 = n_sc; i < 4 && nxt_alloc32 != 0 && nxt_alloc32 < sz_drv32; i++, nxt_alloc32 += sz_part32) { + sz_part32 = (DWORD)plst[i]; /* Get partition size */ + if (sz_part32 <= 100) sz_part32 = (sz_part32 == 100) ? sz_drv32 : sz_drv32 / 100 * sz_part32; /* Size in percentage? */ + if (nxt_alloc32 + sz_part32 > sz_drv32 || nxt_alloc32 + sz_part32 < nxt_alloc32) sz_part32 = sz_drv32 - nxt_alloc32; /* Clip at drive size */ + if (sz_part32 == 0) break; /* End of table or no sector to allocate? */ + + st_dword(pte + PTE_StLba, nxt_alloc32); /* Start LBA */ + st_dword(pte + PTE_SizLba, sz_part32); /* Number of sectors */ + pte[PTE_System] = sys; /* System type */ + + cy = (UINT)(nxt_alloc32 / n_sc / n_hd); /* Start cylinder */ + hd = (BYTE)(nxt_alloc32 / n_sc % n_hd); /* Start head */ + sc = (BYTE)(nxt_alloc32 % n_sc + 1); /* Start sector */ + pte[PTE_StHead] = hd; + pte[PTE_StSec] = (BYTE)((cy >> 2 & 0xC0) | sc); + pte[PTE_StCyl] = (BYTE)cy; + + cy = (UINT)((nxt_alloc32 + sz_part32 - 1) / n_sc / n_hd); /* End cylinder */ + hd = (BYTE)((nxt_alloc32 + sz_part32 - 1) / n_sc % n_hd); /* End head */ + sc = (BYTE)((nxt_alloc32 + sz_part32 - 1) % n_sc + 1); /* End sector */ + pte[PTE_EdHead] = hd; + pte[PTE_EdSec] = (BYTE)((cy >> 2 & 0xC0) | sc); + pte[PTE_EdCyl] = (BYTE)cy; + + pte += SZ_PTE; /* Next entry */ + } + + st_word(buf + BS_55AA, 0xAA55); /* MBR signature */ + if (disk_write(drv, buf, 0, 1) != RES_OK) return FR_DISK_ERR; /* Write it to the MBR */ + } + + return FR_OK; +} + + + +FRESULT f_mkfs ( + const TCHAR* path, /* Logical drive number */ + const MKFS_PARM* opt, /* Format options */ + void* work, /* Pointer to working buffer (null: use len bytes of heap memory) */ + UINT len /* Size of working buffer [byte] */ +) +{ + static const WORD cst[] = {1, 4, 16, 64, 256, 512, 0}; /* Cluster size boundary for FAT volume (4Ks unit) */ + static const WORD cst32[] = {1, 2, 4, 8, 16, 32, 0}; /* Cluster size boundary for FAT32 volume (128Ks unit) */ + static const MKFS_PARM defopt = {FM_ANY, 0, 0, 0, 0}; /* Default parameter */ + BYTE fsopt, fsty, sys, pdrv, ipart; + BYTE *buf; + BYTE *pte; + WORD ss; /* Sector size */ + DWORD sz_buf, sz_blk, n_clst, pau, nsect, n, vsn; + LBA_t sz_vol, b_vol, b_fat, b_data; /* Size of volume, Base LBA of volume, fat, data */ + LBA_t sect, lba[2]; + DWORD sz_rsv, sz_fat, sz_dir, sz_au; /* Size of reserved, fat, dir, data, cluster */ + UINT n_fat, n_root, i; /* Index, Number of FATs and Number of roor dir entries */ + int vol; + DSTATUS ds; + FRESULT res; + + + /* Check mounted drive and clear work area */ + vol = get_ldnumber(&path); /* Get target logical drive */ + if (vol < 0) return FR_INVALID_DRIVE; + if (FatFs[vol]) FatFs[vol]->fs_type = 0; /* Clear the fs object if mounted */ + pdrv = LD2PD(vol); /* Hosting physical drive */ + ipart = LD2PT(vol); /* Hosting partition (0:create as new, 1..:existing partition) */ + + /* Initialize the hosting physical drive */ + ds = disk_initialize(pdrv); + if (ds & STA_NOINIT) return FR_NOT_READY; + if (ds & STA_PROTECT) return FR_WRITE_PROTECTED; + + /* Get physical drive parameters (sz_drv, sz_blk and ss) */ + if (!opt) opt = &defopt; /* Use default parameter if it is not given */ + sz_blk = opt->align; + if (sz_blk == 0) disk_ioctl(pdrv, GET_BLOCK_SIZE, &sz_blk); /* Block size from the paramter or lower layer */ + if (sz_blk == 0 || sz_blk > 0x8000 || (sz_blk & (sz_blk - 1))) sz_blk = 1; /* Use default if the block size is invalid */ +#if FF_MAX_SS != FF_MIN_SS + if (disk_ioctl(pdrv, GET_SECTOR_SIZE, &ss) != RES_OK) return FR_DISK_ERR; + if (ss > FF_MAX_SS || ss < FF_MIN_SS || (ss & (ss - 1))) return FR_DISK_ERR; +#else + ss = FF_MAX_SS; +#endif + + /* Options for FAT sub-type and FAT parameters */ + fsopt = opt->fmt & (FM_ANY | FM_SFD); + n_fat = (opt->n_fat >= 1 && opt->n_fat <= 2) ? opt->n_fat : 1; + n_root = (opt->n_root >= 1 && opt->n_root <= 32768 && (opt->n_root % (ss / SZDIRE)) == 0) ? opt->n_root : 512; + sz_au = (opt->au_size <= 0x1000000 && (opt->au_size & (opt->au_size - 1)) == 0) ? opt->au_size : 0; + sz_au /= ss; /* Byte --> Sector */ + + /* Get working buffer */ + sz_buf = len / ss; /* Size of working buffer [sector] */ + if (sz_buf == 0) return FR_NOT_ENOUGH_CORE; + buf = (BYTE*)work; /* Working buffer */ +#if FF_USE_LFN == 3 + if (!buf) buf = ff_memalloc(sz_buf * ss); /* Use heap memory for working buffer */ +#endif + if (!buf) return FR_NOT_ENOUGH_CORE; + + /* Determine where the volume to be located (b_vol, sz_vol) */ + b_vol = sz_vol = 0; + if (FF_MULTI_PARTITION && ipart != 0) { /* Is the volume associated with any specific partition? */ + /* Get partition location from the existing partition table */ + if (disk_read(pdrv, buf, 0, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); /* Load MBR */ + if (ld_word(buf + BS_55AA) != 0xAA55) LEAVE_MKFS(FR_MKFS_ABORTED); /* Check if MBR is valid */ +#if FF_LBA64 + if (buf[MBR_Table + PTE_System] == 0xEE) { /* GPT protective MBR? */ + DWORD n_ent, ofs; + QWORD pt_lba; + + /* Get the partition location from GPT */ + if (disk_read(pdrv, buf, 1, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); /* Load GPT header sector (next to MBR) */ + if (!test_gpt_header(buf)) LEAVE_MKFS(FR_MKFS_ABORTED); /* Check if GPT header is valid */ + n_ent = ld_dword(buf + GPTH_PtNum); /* Number of entries */ + pt_lba = ld_qword(buf + GPTH_PtOfs); /* Table start sector */ + ofs = i = 0; + while (n_ent) { /* Find MS Basic partition with order of ipart */ + if (ofs == 0 && disk_read(pdrv, buf, pt_lba++, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); /* Get PT sector */ + if (!memcmp(buf + ofs + GPTE_PtGuid, GUID_MS_Basic, 16) && ++i == ipart) { /* MS basic data partition? */ + b_vol = ld_qword(buf + ofs + GPTE_FstLba); + sz_vol = ld_qword(buf + ofs + GPTE_LstLba) - b_vol + 1; + break; + } + n_ent--; ofs = (ofs + SZ_GPTE) % ss; /* Next entry */ + } + if (n_ent == 0) LEAVE_MKFS(FR_MKFS_ABORTED); /* Partition not found */ + fsopt |= 0x80; /* Partitioning is in GPT */ + } else +#endif + { /* Get the partition location from MBR partition table */ + pte = buf + (MBR_Table + (ipart - 1) * SZ_PTE); + if (ipart > 4 || pte[PTE_System] == 0) LEAVE_MKFS(FR_MKFS_ABORTED); /* No partition? */ + b_vol = ld_dword(pte + PTE_StLba); /* Get volume start sector */ + sz_vol = ld_dword(pte + PTE_SizLba); /* Get volume size */ + } + } else { /* The volume is associated with a physical drive */ + if (disk_ioctl(pdrv, GET_SECTOR_COUNT, &sz_vol) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + if (!(fsopt & FM_SFD)) { /* To be partitioned? */ + /* Create a single-partition on the drive in this function */ +#if FF_LBA64 + if (sz_vol >= FF_MIN_GPT) { /* Which partition type to create, MBR or GPT? */ + fsopt |= 0x80; /* Partitioning is in GPT */ + b_vol = GPT_ALIGN / ss; sz_vol -= b_vol + GPT_ITEMS * SZ_GPTE / ss + 1; /* Estimated partition offset and size */ + } else +#endif + { /* Partitioning is in MBR */ + if (sz_vol > N_SEC_TRACK) { + b_vol = N_SEC_TRACK; sz_vol -= b_vol; /* Estimated partition offset and size */ + } + } + } + } + if (sz_vol < 128) LEAVE_MKFS(FR_MKFS_ABORTED); /* Check if volume size is >=128s */ + + /* Now start to create an FAT volume at b_vol and sz_vol */ + + do { /* Pre-determine the FAT type */ + if (FF_FS_EXFAT && (fsopt & FM_EXFAT)) { /* exFAT possible? */ + if ((fsopt & FM_ANY) == FM_EXFAT || sz_vol >= 0x4000000 || sz_au > 128) { /* exFAT only, vol >= 64MS or sz_au > 128S ? */ + fsty = FS_EXFAT; break; + } + } +#if FF_LBA64 + if (sz_vol >= 0x100000000) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too large volume for FAT/FAT32 */ +#endif + if (sz_au > 128) sz_au = 128; /* Invalid AU for FAT/FAT32? */ + if (fsopt & FM_FAT32) { /* FAT32 possible? */ + if (!(fsopt & FM_FAT)) { /* no-FAT? */ + fsty = FS_FAT32; break; + } + } + if (!(fsopt & FM_FAT)) LEAVE_MKFS(FR_INVALID_PARAMETER); /* no-FAT? */ + fsty = FS_FAT16; + } while (0); + + vsn = (DWORD)sz_vol + GET_FATTIME(); /* VSN generated from current time and partitiion size */ + +#if FF_FS_EXFAT + if (fsty == FS_EXFAT) { /* Create an exFAT volume */ + DWORD szb_bit, szb_case, sum, nbit, clu, clen[3]; + WCHAR ch, si; + UINT j, st; + + if (sz_vol < 0x1000) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too small volume for exFAT? */ +#if FF_USE_TRIM + lba[0] = b_vol; lba[1] = b_vol + sz_vol - 1; /* Inform storage device that the volume area may be erased */ + disk_ioctl(pdrv, CTRL_TRIM, lba); +#endif + /* Determine FAT location, data location and number of clusters */ + if (sz_au == 0) { /* AU auto-selection */ + sz_au = 8; + if (sz_vol >= 0x80000) sz_au = 64; /* >= 512Ks */ + if (sz_vol >= 0x4000000) sz_au = 256; /* >= 64Ms */ + } + b_fat = b_vol + 32; /* FAT start at offset 32 */ + sz_fat = (DWORD)((sz_vol / sz_au + 2) * 4 + ss - 1) / ss; /* Number of FAT sectors */ + b_data = (b_fat + sz_fat + sz_blk - 1) & ~((LBA_t)sz_blk - 1); /* Align data area to the erase block boundary */ + if (b_data - b_vol >= sz_vol / 2) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too small volume? */ + n_clst = (DWORD)((sz_vol - (b_data - b_vol)) / sz_au); /* Number of clusters */ + if (n_clst <16) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too few clusters? */ + if (n_clst > MAX_EXFAT) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too many clusters? */ + + szb_bit = (n_clst + 7) / 8; /* Size of allocation bitmap */ + clen[0] = (szb_bit + sz_au * ss - 1) / (sz_au * ss); /* Number of allocation bitmap clusters */ + + /* Create a compressed up-case table */ + sect = b_data + sz_au * clen[0]; /* Table start sector */ + sum = 0; /* Table checksum to be stored in the 82 entry */ + st = 0; si = 0; i = 0; j = 0; szb_case = 0; + do { + switch (st) { + case 0: + ch = (WCHAR)ff_wtoupper(si); /* Get an up-case char */ + if (ch != si) { + si++; break; /* Store the up-case char if exist */ + } + for (j = 1; (WCHAR)(si + j) && (WCHAR)(si + j) == ff_wtoupper((WCHAR)(si + j)); j++) ; /* Get run length of no-case block */ + if (j >= 128) { + ch = 0xFFFF; st = 2; break; /* Compress the no-case block if run is >= 128 chars */ + } + st = 1; /* Do not compress short run */ + /* FALLTHROUGH */ + case 1: + ch = si++; /* Fill the short run */ + if (--j == 0) st = 0; + break; + + default: + ch = (WCHAR)j; si += (WCHAR)j; /* Number of chars to skip */ + st = 0; + } + sum = xsum32(buf[i + 0] = (BYTE)ch, sum); /* Put it into the write buffer */ + sum = xsum32(buf[i + 1] = (BYTE)(ch >> 8), sum); + i += 2; szb_case += 2; + if (si == 0 || i == sz_buf * ss) { /* Write buffered data when buffer full or end of process */ + n = (i + ss - 1) / ss; + if (disk_write(pdrv, buf, sect, n) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + sect += n; i = 0; + } + } while (si); + clen[1] = (szb_case + sz_au * ss - 1) / (sz_au * ss); /* Number of up-case table clusters */ + clen[2] = 1; /* Number of root dir clusters */ + + /* Initialize the allocation bitmap */ + sect = b_data; nsect = (szb_bit + ss - 1) / ss; /* Start of bitmap and number of bitmap sectors */ + nbit = clen[0] + clen[1] + clen[2]; /* Number of clusters in-use by system (bitmap, up-case and root-dir) */ + do { + memset(buf, 0, sz_buf * ss); /* Initialize bitmap buffer */ + for (i = 0; nbit != 0 && i / 8 < sz_buf * ss; buf[i / 8] |= 1 << (i % 8), i++, nbit--) ; /* Mark used clusters */ + n = (nsect > sz_buf) ? sz_buf : nsect; /* Write the buffered data */ + if (disk_write(pdrv, buf, sect, n) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + sect += n; nsect -= n; + } while (nsect); + + /* Initialize the FAT */ + sect = b_fat; nsect = sz_fat; /* Start of FAT and number of FAT sectors */ + j = nbit = clu = 0; + do { + memset(buf, 0, sz_buf * ss); i = 0; /* Clear work area and reset write offset */ + if (clu == 0) { /* Initialize FAT [0] and FAT[1] */ + st_dword(buf + i, 0xFFFFFFF8); i += 4; clu++; + st_dword(buf + i, 0xFFFFFFFF); i += 4; clu++; + } + do { /* Create chains of bitmap, up-case and root dir */ + while (nbit != 0 && i < sz_buf * ss) { /* Create a chain */ + st_dword(buf + i, (nbit > 1) ? clu + 1 : 0xFFFFFFFF); + i += 4; clu++; nbit--; + } + if (nbit == 0 && j < 3) nbit = clen[j++]; /* Get next chain length */ + } while (nbit != 0 && i < sz_buf * ss); + n = (nsect > sz_buf) ? sz_buf : nsect; /* Write the buffered data */ + if (disk_write(pdrv, buf, sect, n) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + sect += n; nsect -= n; + } while (nsect); + + /* Initialize the root directory */ + memset(buf, 0, sz_buf * ss); + buf[SZDIRE * 0 + 0] = ET_VLABEL; /* Volume label entry (no label) */ + buf[SZDIRE * 1 + 0] = ET_BITMAP; /* Bitmap entry */ + st_dword(buf + SZDIRE * 1 + 20, 2); /* cluster */ + st_dword(buf + SZDIRE * 1 + 24, szb_bit); /* size */ + buf[SZDIRE * 2 + 0] = ET_UPCASE; /* Up-case table entry */ + st_dword(buf + SZDIRE * 2 + 4, sum); /* sum */ + st_dword(buf + SZDIRE * 2 + 20, 2 + clen[0]); /* cluster */ + st_dword(buf + SZDIRE * 2 + 24, szb_case); /* size */ + sect = b_data + sz_au * (clen[0] + clen[1]); nsect = sz_au; /* Start of the root directory and number of sectors */ + do { /* Fill root directory sectors */ + n = (nsect > sz_buf) ? sz_buf : nsect; + if (disk_write(pdrv, buf, sect, n) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + memset(buf, 0, ss); /* Rest of entries are filled with zero */ + sect += n; nsect -= n; + } while (nsect); + + /* Create two set of the exFAT VBR blocks */ + sect = b_vol; + for (n = 0; n < 2; n++) { + /* Main record (+0) */ + memset(buf, 0, ss); + memcpy(buf + BS_JmpBoot, "\xEB\x76\x90" "EXFAT ", 11); /* Boot jump code (x86), OEM name */ + st_qword(buf + BPB_VolOfsEx, b_vol); /* Volume offset in the physical drive [sector] */ + st_qword(buf + BPB_TotSecEx, sz_vol); /* Volume size [sector] */ + st_dword(buf + BPB_FatOfsEx, (DWORD)(b_fat - b_vol)); /* FAT offset [sector] */ + st_dword(buf + BPB_FatSzEx, sz_fat); /* FAT size [sector] */ + st_dword(buf + BPB_DataOfsEx, (DWORD)(b_data - b_vol)); /* Data offset [sector] */ + st_dword(buf + BPB_NumClusEx, n_clst); /* Number of clusters */ + st_dword(buf + BPB_RootClusEx, 2 + clen[0] + clen[1]); /* Root dir cluster # */ + st_dword(buf + BPB_VolIDEx, vsn); /* VSN */ + st_word(buf + BPB_FSVerEx, 0x100); /* Filesystem version (1.00) */ + for (buf[BPB_BytsPerSecEx] = 0, i = ss; i >>= 1; buf[BPB_BytsPerSecEx]++) ; /* Log2 of sector size [byte] */ + for (buf[BPB_SecPerClusEx] = 0, i = sz_au; i >>= 1; buf[BPB_SecPerClusEx]++) ; /* Log2 of cluster size [sector] */ + buf[BPB_NumFATsEx] = 1; /* Number of FATs */ + buf[BPB_DrvNumEx] = 0x80; /* Drive number (for int13) */ + st_word(buf + BS_BootCodeEx, 0xFEEB); /* Boot code (x86) */ + st_word(buf + BS_55AA, 0xAA55); /* Signature (placed here regardless of sector size) */ + for (i = sum = 0; i < ss; i++) { /* VBR checksum */ + if (i != BPB_VolFlagEx && i != BPB_VolFlagEx + 1 && i != BPB_PercInUseEx) sum = xsum32(buf[i], sum); + } + if (disk_write(pdrv, buf, sect++, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + /* Extended bootstrap record (+1..+8) */ + memset(buf, 0, ss); + st_word(buf + ss - 2, 0xAA55); /* Signature (placed at end of sector) */ + for (j = 1; j < 9; j++) { + for (i = 0; i < ss; sum = xsum32(buf[i++], sum)) ; /* VBR checksum */ + if (disk_write(pdrv, buf, sect++, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + } + /* OEM/Reserved record (+9..+10) */ + memset(buf, 0, ss); + for ( ; j < 11; j++) { + for (i = 0; i < ss; sum = xsum32(buf[i++], sum)) ; /* VBR checksum */ + if (disk_write(pdrv, buf, sect++, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + } + /* Sum record (+11) */ + for (i = 0; i < ss; i += 4) st_dword(buf + i, sum); /* Fill with checksum value */ + if (disk_write(pdrv, buf, sect++, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + } + + } else +#endif /* FF_FS_EXFAT */ + { /* Create an FAT/FAT32 volume */ + do { + pau = sz_au; + /* Pre-determine number of clusters and FAT sub-type */ + if (fsty == FS_FAT32) { /* FAT32 volume */ + if (pau == 0) { /* AU auto-selection */ + n = (DWORD)sz_vol / 0x20000; /* Volume size in unit of 128KS */ + for (i = 0, pau = 1; cst32[i] && cst32[i] <= n; i++, pau <<= 1) ; /* Get from table */ + } + n_clst = (DWORD)sz_vol / pau; /* Number of clusters */ + sz_fat = (n_clst * 4 + 8 + ss - 1) / ss; /* FAT size [sector] */ + sz_rsv = 32; /* Number of reserved sectors */ + sz_dir = 0; /* No static directory */ + if (n_clst <= MAX_FAT16 || n_clst > MAX_FAT32) LEAVE_MKFS(FR_MKFS_ABORTED); + } else { /* FAT volume */ + if (pau == 0) { /* au auto-selection */ + n = (DWORD)sz_vol / 0x1000; /* Volume size in unit of 4KS */ + for (i = 0, pau = 1; cst[i] && cst[i] <= n; i++, pau <<= 1) ; /* Get from table */ + } + n_clst = (DWORD)sz_vol / pau; + if (n_clst > MAX_FAT12) { + n = n_clst * 2 + 4; /* FAT size [byte] */ + } else { + fsty = FS_FAT12; + n = (n_clst * 3 + 1) / 2 + 3; /* FAT size [byte] */ + } + sz_fat = (n + ss - 1) / ss; /* FAT size [sector] */ + sz_rsv = 1; /* Number of reserved sectors */ + sz_dir = (DWORD)n_root * SZDIRE / ss; /* Root dir size [sector] */ + } + b_fat = b_vol + sz_rsv; /* FAT base */ + b_data = b_fat + sz_fat * n_fat + sz_dir; /* Data base */ + + /* Align data area to erase block boundary (for flash memory media) */ + n = (DWORD)(((b_data + sz_blk - 1) & ~(sz_blk - 1)) - b_data); /* Sectors to next nearest from current data base */ + if (fsty == FS_FAT32) { /* FAT32: Move FAT */ + sz_rsv += n; b_fat += n; + } else { /* FAT: Expand FAT */ + if (n % n_fat) { /* Adjust fractional error if needed */ + n--; sz_rsv++; b_fat++; + } + sz_fat += n / n_fat; + } + + /* Determine number of clusters and final check of validity of the FAT sub-type */ + if (sz_vol < b_data + pau * 16 - b_vol) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too small volume? */ + n_clst = ((DWORD)sz_vol - sz_rsv - sz_fat * n_fat - sz_dir) / pau; + if (fsty == FS_FAT32) { + if (n_clst <= MAX_FAT16) { /* Too few clusters for FAT32? */ + if (sz_au == 0 && (sz_au = pau / 2) != 0) continue; /* Adjust cluster size and retry */ + LEAVE_MKFS(FR_MKFS_ABORTED); + } + } + if (fsty == FS_FAT16) { + if (n_clst > MAX_FAT16) { /* Too many clusters for FAT16 */ + if (sz_au == 0 && (pau * 2) <= 64) { + sz_au = pau * 2; continue; /* Adjust cluster size and retry */ + } + if ((fsopt & FM_FAT32)) { + fsty = FS_FAT32; continue; /* Switch type to FAT32 and retry */ + } + if (sz_au == 0 && (sz_au = pau * 2) <= 128) continue; /* Adjust cluster size and retry */ + LEAVE_MKFS(FR_MKFS_ABORTED); + } + if (n_clst <= MAX_FAT12) { /* Too few clusters for FAT16 */ + if (sz_au == 0 && (sz_au = pau * 2) <= 128) continue; /* Adjust cluster size and retry */ + LEAVE_MKFS(FR_MKFS_ABORTED); + } + } + if (fsty == FS_FAT12 && n_clst > MAX_FAT12) LEAVE_MKFS(FR_MKFS_ABORTED); /* Too many clusters for FAT12 */ + + /* Ok, it is the valid cluster configuration */ + break; + } while (1); + +#if FF_USE_TRIM + lba[0] = b_vol; lba[1] = b_vol + sz_vol - 1; /* Inform storage device that the volume area may be erased */ + disk_ioctl(pdrv, CTRL_TRIM, lba); +#endif + /* Create FAT VBR */ + memset(buf, 0, ss); + memcpy(buf + BS_JmpBoot, "\xEB\xFE\x90" "MSDOS5.0", 11); /* Boot jump code (x86), OEM name */ + st_word(buf + BPB_BytsPerSec, ss); /* Sector size [byte] */ + buf[BPB_SecPerClus] = (BYTE)pau; /* Cluster size [sector] */ + st_word(buf + BPB_RsvdSecCnt, (WORD)sz_rsv); /* Size of reserved area */ + buf[BPB_NumFATs] = (BYTE)n_fat; /* Number of FATs */ + st_word(buf + BPB_RootEntCnt, (WORD)((fsty == FS_FAT32) ? 0 : n_root)); /* Number of root directory entries */ + if (sz_vol < 0x10000) { + st_word(buf + BPB_TotSec16, (WORD)sz_vol); /* Volume size in 16-bit LBA */ + } else { + st_dword(buf + BPB_TotSec32, (DWORD)sz_vol); /* Volume size in 32-bit LBA */ + } + buf[BPB_Media] = 0xF8; /* Media descriptor byte */ + st_word(buf + BPB_SecPerTrk, 63); /* Number of sectors per track (for int13) */ + st_word(buf + BPB_NumHeads, 255); /* Number of heads (for int13) */ + st_dword(buf + BPB_HiddSec, (DWORD)b_vol); /* Volume offset in the physical drive [sector] */ + if (fsty == FS_FAT32) { + st_dword(buf + BS_VolID32, vsn); /* VSN */ + st_dword(buf + BPB_FATSz32, sz_fat); /* FAT size [sector] */ + st_dword(buf + BPB_RootClus32, 2); /* Root directory cluster # (2) */ + st_word(buf + BPB_FSInfo32, 1); /* Offset of FSINFO sector (VBR + 1) */ + st_word(buf + BPB_BkBootSec32, 6); /* Offset of backup VBR (VBR + 6) */ + buf[BS_DrvNum32] = 0x80; /* Drive number (for int13) */ + buf[BS_BootSig32] = 0x29; /* Extended boot signature */ + memcpy(buf + BS_VolLab32, "NO NAME " "FAT32 ", 19); /* Volume label, FAT signature */ + } else { + st_dword(buf + BS_VolID, vsn); /* VSN */ + st_word(buf + BPB_FATSz16, (WORD)sz_fat); /* FAT size [sector] */ + buf[BS_DrvNum] = 0x80; /* Drive number (for int13) */ + buf[BS_BootSig] = 0x29; /* Extended boot signature */ + memcpy(buf + BS_VolLab, "NO NAME " "FAT ", 19); /* Volume label, FAT signature */ + } + st_word(buf + BS_55AA, 0xAA55); /* Signature (offset is fixed here regardless of sector size) */ + if (disk_write(pdrv, buf, b_vol, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); /* Write it to the VBR sector */ + + /* Create FSINFO record if needed */ + if (fsty == FS_FAT32) { + disk_write(pdrv, buf, b_vol + 6, 1); /* Write backup VBR (VBR + 6) */ + memset(buf, 0, ss); + st_dword(buf + FSI_LeadSig, 0x41615252); + st_dword(buf + FSI_StrucSig, 0x61417272); + st_dword(buf + FSI_Free_Count, n_clst - 1); /* Number of free clusters */ + st_dword(buf + FSI_Nxt_Free, 2); /* Last allocated cluster# */ + st_word(buf + BS_55AA, 0xAA55); + disk_write(pdrv, buf, b_vol + 7, 1); /* Write backup FSINFO (VBR + 7) */ + disk_write(pdrv, buf, b_vol + 1, 1); /* Write original FSINFO (VBR + 1) */ + } + + /* Initialize FAT area */ + memset(buf, 0, sz_buf * ss); + sect = b_fat; /* FAT start sector */ + for (i = 0; i < n_fat; i++) { /* Initialize FATs each */ + if (fsty == FS_FAT32) { + st_dword(buf + 0, 0xFFFFFFF8); /* FAT[0] */ + st_dword(buf + 4, 0xFFFFFFFF); /* FAT[1] */ + st_dword(buf + 8, 0x0FFFFFFF); /* FAT[2] (root directory) */ + } else { + st_dword(buf + 0, (fsty == FS_FAT12) ? 0xFFFFF8 : 0xFFFFFFF8); /* FAT[0] and FAT[1] */ + } + nsect = sz_fat; /* Number of FAT sectors */ + do { /* Fill FAT sectors */ + n = (nsect > sz_buf) ? sz_buf : nsect; + if (disk_write(pdrv, buf, sect, (UINT)n) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + memset(buf, 0, ss); /* Rest of FAT all are cleared */ + sect += n; nsect -= n; + } while (nsect); + } + + /* Initialize root directory (fill with zero) */ + nsect = (fsty == FS_FAT32) ? pau : sz_dir; /* Number of root directory sectors */ + do { + n = (nsect > sz_buf) ? sz_buf : nsect; + if (disk_write(pdrv, buf, sect, (UINT)n) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + sect += n; nsect -= n; + } while (nsect); + } + + /* A FAT volume has been created here */ + + /* Determine system ID in the MBR partition table */ + if (FF_FS_EXFAT && fsty == FS_EXFAT) { + sys = 0x07; /* exFAT */ + } else if (fsty == FS_FAT32) { + sys = 0x0C; /* FAT32X */ + } else if (sz_vol >= 0x10000) { + sys = 0x06; /* FAT12/16 (large) */ + } else if (fsty == FS_FAT16) { + sys = 0x04; /* FAT16 */ + } else { + sys = 0x01; /* FAT12 */ + } + + /* Update partition information */ + if (FF_MULTI_PARTITION && ipart != 0) { /* Volume is in the existing partition */ + if (!FF_LBA64 || !(fsopt & 0x80)) { /* Is the partition in MBR? */ + /* Update system ID in the partition table */ + if (disk_read(pdrv, buf, 0, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); /* Read the MBR */ + buf[MBR_Table + (ipart - 1) * SZ_PTE + PTE_System] = sys; /* Set system ID */ + if (disk_write(pdrv, buf, 0, 1) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); /* Write it back to the MBR */ + } + } else { /* Volume as a new single partition */ + if (!(fsopt & FM_SFD)) { /* Create partition table if not in SFD format */ + lba[0] = sz_vol; lba[1] = 0; + res = create_partition(pdrv, lba, sys, buf); + if (res != FR_OK) LEAVE_MKFS(res); + } + } + + if (disk_ioctl(pdrv, CTRL_SYNC, 0) != RES_OK) LEAVE_MKFS(FR_DISK_ERR); + + LEAVE_MKFS(FR_OK); +} + + + + +#if FF_MULTI_PARTITION +/*-----------------------------------------------------------------------*/ +/* Create Partition Table on the Physical Drive */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_fdisk ( + BYTE pdrv, /* Physical drive number */ + const LBA_t ptbl[], /* Pointer to the size table for each partitions */ + void* work /* Pointer to the working buffer (null: use heap memory) */ +) +{ + BYTE *buf = (BYTE*)work; + DSTATUS stat; + FRESULT res; + + + /* Initialize the physical drive */ + stat = disk_initialize(pdrv); + if (stat & STA_NOINIT) return FR_NOT_READY; + if (stat & STA_PROTECT) return FR_WRITE_PROTECTED; + +#if FF_USE_LFN == 3 + if (!buf) buf = ff_memalloc(FF_MAX_SS); /* Use heap memory for working buffer */ +#endif + if (!buf) return FR_NOT_ENOUGH_CORE; + + res = create_partition(pdrv, ptbl, 0x07, buf); /* Create partitions (system ID is temporary setting and determined by f_mkfs) */ + + LEAVE_MKFS(res); +} + +#endif /* FF_MULTI_PARTITION */ +#endif /* !FF_FS_READONLY && FF_USE_MKFS */ + + + + +#if FF_USE_STRFUNC +#if FF_USE_LFN && FF_LFN_UNICODE && (FF_STRF_ENCODE < 0 || FF_STRF_ENCODE > 3) +#error Wrong FF_STRF_ENCODE setting +#endif +/*-----------------------------------------------------------------------*/ +/* Get a String from the File */ +/*-----------------------------------------------------------------------*/ + +TCHAR* f_gets ( + TCHAR* buff, /* Pointer to the buffer to store read string */ + int len, /* Size of string buffer (items) */ + FIL* fp /* Pointer to the file object */ +) +{ + int nc = 0; + TCHAR *p = buff; + BYTE s[4]; + UINT rc; + DWORD dc; +#if FF_USE_LFN && FF_LFN_UNICODE && FF_STRF_ENCODE <= 2 + WCHAR wc; +#endif +#if FF_USE_LFN && FF_LFN_UNICODE && FF_STRF_ENCODE == 3 + UINT ct; +#endif + +#if FF_USE_LFN && FF_LFN_UNICODE /* With code conversion (Unicode API) */ + /* Make a room for the character and terminator */ + if (FF_LFN_UNICODE == 1) len -= (FF_STRF_ENCODE == 0) ? 1 : 2; + if (FF_LFN_UNICODE == 2) len -= (FF_STRF_ENCODE == 0) ? 3 : 4; + if (FF_LFN_UNICODE == 3) len -= 1; + while (nc < len) { +#if FF_STRF_ENCODE == 0 /* Read a character in ANSI/OEM */ + f_read(fp, s, 1, &rc); /* Get a code unit */ + if (rc != 1) break; /* EOF? */ + wc = s[0]; + if (dbc_1st((BYTE)wc)) { /* DBC 1st byte? */ + f_read(fp, s, 1, &rc); /* Get 2nd byte */ + if (rc != 1 || !dbc_2nd(s[0])) continue; /* Wrong code? */ + wc = wc << 8 | s[0]; + } + dc = ff_oem2uni(wc, CODEPAGE); /* Convert ANSI/OEM into Unicode */ + if (dc == 0) continue; /* Conversion error? */ +#elif FF_STRF_ENCODE == 1 || FF_STRF_ENCODE == 2 /* Read a character in UTF-16LE/BE */ + f_read(fp, s, 2, &rc); /* Get a code unit */ + if (rc != 2) break; /* EOF? */ + dc = (FF_STRF_ENCODE == 1) ? ld_word(s) : s[0] << 8 | s[1]; + if (IsSurrogateL(dc)) continue; /* Broken surrogate pair? */ + if (IsSurrogateH(dc)) { /* High surrogate? */ + f_read(fp, s, 2, &rc); /* Get low surrogate */ + if (rc != 2) break; /* EOF? */ + wc = (FF_STRF_ENCODE == 1) ? ld_word(s) : s[0] << 8 | s[1]; + if (!IsSurrogateL(wc)) continue; /* Broken surrogate pair? */ + dc = ((dc & 0x3FF) + 0x40) << 10 | (wc & 0x3FF); /* Merge surrogate pair */ + } +#else /* Read a character in UTF-8 */ + f_read(fp, s, 1, &rc); /* Get a code unit */ + if (rc != 1) break; /* EOF? */ + dc = s[0]; + if (dc >= 0x80) { /* Multi-byte sequence? */ + ct = 0; + if ((dc & 0xE0) == 0xC0) { /* 2-byte sequence? */ + dc &= 0x1F; ct = 1; + } + if ((dc & 0xF0) == 0xE0) { /* 3-byte sequence? */ + dc &= 0x0F; ct = 2; + } + if ((dc & 0xF8) == 0xF0) { /* 4-byte sequence? */ + dc &= 0x07; ct = 3; + } + if (ct == 0) continue; + f_read(fp, s, ct, &rc); /* Get trailing bytes */ + if (rc != ct) break; + rc = 0; + do { /* Merge the byte sequence */ + if ((s[rc] & 0xC0) != 0x80) break; + dc = dc << 6 | (s[rc] & 0x3F); + } while (++rc < ct); + if (rc != ct || dc < 0x80 || IsSurrogate(dc) || dc >= 0x110000) continue; /* Wrong encoding? */ + } +#endif + /* A code point is avaialble in dc to be output */ + + if (FF_USE_STRFUNC == 2 && dc == '\r') continue; /* Strip \r off if needed */ +#if FF_LFN_UNICODE == 1 || FF_LFN_UNICODE == 3 /* Output it in UTF-16/32 encoding */ + if (FF_LFN_UNICODE == 1 && dc >= 0x10000) { /* Out of BMP at UTF-16? */ + *p++ = (TCHAR)(0xD800 | ((dc >> 10) - 0x40)); nc++; /* Make and output high surrogate */ + dc = 0xDC00 | (dc & 0x3FF); /* Make low surrogate */ + } + *p++ = (TCHAR)dc; nc++; + if (dc == '\n') break; /* End of line? */ +#elif FF_LFN_UNICODE == 2 /* Output it in UTF-8 encoding */ + if (dc < 0x80) { /* Single byte? */ + *p++ = (TCHAR)dc; + nc++; + if (dc == '\n') break; /* End of line? */ + } else if (dc < 0x800) { /* 2-byte sequence? */ + *p++ = (TCHAR)(0xC0 | (dc >> 6 & 0x1F)); + *p++ = (TCHAR)(0x80 | (dc >> 0 & 0x3F)); + nc += 2; + } else if (dc < 0x10000) { /* 3-byte sequence? */ + *p++ = (TCHAR)(0xE0 | (dc >> 12 & 0x0F)); + *p++ = (TCHAR)(0x80 | (dc >> 6 & 0x3F)); + *p++ = (TCHAR)(0x80 | (dc >> 0 & 0x3F)); + nc += 3; + } else { /* 4-byte sequence */ + *p++ = (TCHAR)(0xF0 | (dc >> 18 & 0x07)); + *p++ = (TCHAR)(0x80 | (dc >> 12 & 0x3F)); + *p++ = (TCHAR)(0x80 | (dc >> 6 & 0x3F)); + *p++ = (TCHAR)(0x80 | (dc >> 0 & 0x3F)); + nc += 4; + } +#endif + } + +#else /* Byte-by-byte read without any conversion (ANSI/OEM API) */ + len -= 1; /* Make a room for the terminator */ + while (nc < len) { + f_read(fp, s, 1, &rc); /* Get a byte */ + if (rc != 1) break; /* EOF? */ + dc = s[0]; + if (FF_USE_STRFUNC == 2 && dc == '\r') continue; + *p++ = (TCHAR)dc; nc++; + if (dc == '\n') break; + } +#endif + + *p = 0; /* Terminate the string */ + return nc ? buff : 0; /* When no data read due to EOF or error, return with error. */ +} + + + + +#if !FF_FS_READONLY +#include +#define SZ_PUTC_BUF 64 +#define SZ_NUM_BUF 32 + +/*-----------------------------------------------------------------------*/ +/* Put a Character to the File (with sub-functions) */ +/*-----------------------------------------------------------------------*/ + +/* Output buffer and work area */ + +typedef struct { + FIL *fp; /* Ptr to the writing file */ + int idx, nchr; /* Write index of buf[] (-1:error), number of encoding units written */ +#if FF_USE_LFN && FF_LFN_UNICODE == 1 + WCHAR hs; +#elif FF_USE_LFN && FF_LFN_UNICODE == 2 + BYTE bs[4]; + UINT wi, ct; +#endif + BYTE buf[SZ_PUTC_BUF]; /* Write buffer */ +} putbuff; + + +/* Buffered file write with code conversion */ + +static void putc_bfd (putbuff* pb, TCHAR c) +{ + UINT n; + int i, nc; +#if FF_USE_LFN && FF_LFN_UNICODE + WCHAR hs, wc; +#if FF_LFN_UNICODE == 2 + DWORD dc; + const TCHAR* tp; +#endif +#endif + + if (FF_USE_STRFUNC == 2 && c == '\n') { /* LF -> CRLF conversion */ + putc_bfd(pb, '\r'); + } + + i = pb->idx; /* Write index of pb->buf[] */ + if (i < 0) return; /* In write error? */ + nc = pb->nchr; /* Write unit counter */ + +#if FF_USE_LFN && FF_LFN_UNICODE +#if FF_LFN_UNICODE == 1 /* UTF-16 input */ + if (IsSurrogateH(c)) { /* Is this a high-surrogate? */ + pb->hs = c; return; /* Save it for next */ + } + hs = pb->hs; pb->hs = 0; + if (hs != 0) { /* Is there a leading high-surrogate? */ + if (!IsSurrogateL(c)) hs = 0; /* Discard high-surrogate if not a surrogate pair */ + } else { + if (IsSurrogateL(c)) return; /* Discard stray low-surrogate */ + } + wc = c; +#elif FF_LFN_UNICODE == 2 /* UTF-8 input */ + for (;;) { + if (pb->ct == 0) { /* Out of multi-byte sequence? */ + pb->bs[pb->wi = 0] = (BYTE)c; /* Save 1st byte */ + if ((BYTE)c < 0x80) break; /* Single byte code? */ + if (((BYTE)c & 0xE0) == 0xC0) pb->ct = 1; /* 2-byte sequence? */ + if (((BYTE)c & 0xF0) == 0xE0) pb->ct = 2; /* 3-byte sequence? */ + if (((BYTE)c & 0xF8) == 0xF0) pb->ct = 3; /* 4-byte sequence? */ + return; /* Wrong leading byte (discard it) */ + } else { /* In the multi-byte sequence */ + if (((BYTE)c & 0xC0) != 0x80) { /* Broken sequence? */ + pb->ct = 0; continue; /* Discard the sequense */ + } + pb->bs[++pb->wi] = (BYTE)c; /* Save the trailing byte */ + if (--pb->ct == 0) break; /* End of the sequence? */ + return; + } + } + tp = (const TCHAR*)pb->bs; + dc = tchar2uni(&tp); /* UTF-8 ==> UTF-16 */ + if (dc == 0xFFFFFFFF) return; /* Wrong code? */ + hs = (WCHAR)(dc >> 16); + wc = (WCHAR)dc; +#elif FF_LFN_UNICODE == 3 /* UTF-32 input */ + if (IsSurrogate(c) || c >= 0x110000) return; /* Discard invalid code */ + if (c >= 0x10000) { /* Out of BMP? */ + hs = (WCHAR)(0xD800 | ((c >> 10) - 0x40)); /* Make high surrogate */ + wc = 0xDC00 | (c & 0x3FF); /* Make low surrogate */ + } else { + hs = 0; + wc = (WCHAR)c; + } +#endif + /* A code point in UTF-16 is available in hs and wc */ + +#if FF_STRF_ENCODE == 1 /* Write a code point in UTF-16LE */ + if (hs != 0) { /* Surrogate pair? */ + st_word(&pb->buf[i], hs); + i += 2; + nc++; + } + st_word(&pb->buf[i], wc); + i += 2; +#elif FF_STRF_ENCODE == 2 /* Write a code point in UTF-16BE */ + if (hs != 0) { /* Surrogate pair? */ + pb->buf[i++] = (BYTE)(hs >> 8); + pb->buf[i++] = (BYTE)hs; + nc++; + } + pb->buf[i++] = (BYTE)(wc >> 8); + pb->buf[i++] = (BYTE)wc; +#elif FF_STRF_ENCODE == 3 /* Write a code point in UTF-8 */ + if (hs != 0) { /* 4-byte sequence? */ + nc += 3; + hs = (hs & 0x3FF) + 0x40; + pb->buf[i++] = (BYTE)(0xF0 | hs >> 8); + pb->buf[i++] = (BYTE)(0x80 | (hs >> 2 & 0x3F)); + pb->buf[i++] = (BYTE)(0x80 | (hs & 3) << 4 | (wc >> 6 & 0x0F)); + pb->buf[i++] = (BYTE)(0x80 | (wc & 0x3F)); + } else { + if (wc < 0x80) { /* Single byte? */ + pb->buf[i++] = (BYTE)wc; + } else { + if (wc < 0x800) { /* 2-byte sequence? */ + nc += 1; + pb->buf[i++] = (BYTE)(0xC0 | wc >> 6); + } else { /* 3-byte sequence */ + nc += 2; + pb->buf[i++] = (BYTE)(0xE0 | wc >> 12); + pb->buf[i++] = (BYTE)(0x80 | (wc >> 6 & 0x3F)); + } + pb->buf[i++] = (BYTE)(0x80 | (wc & 0x3F)); + } + } +#else /* Write a code point in ANSI/OEM */ + if (hs != 0) return; + wc = ff_uni2oem(wc, CODEPAGE); /* UTF-16 ==> ANSI/OEM */ + if (wc == 0) return; + if (wc >= 0x100) { + pb->buf[i++] = (BYTE)(wc >> 8); nc++; + } + pb->buf[i++] = (BYTE)wc; +#endif + +#else /* ANSI/OEM input (without re-encoding) */ + pb->buf[i++] = (BYTE)c; +#endif + + if (i >= (int)(sizeof pb->buf) - 4) { /* Write buffered characters to the file */ + f_write(pb->fp, pb->buf, (UINT)i, &n); + i = (n == (UINT)i) ? 0 : -1; + } + pb->idx = i; + pb->nchr = nc + 1; +} + + +/* Flush remaining characters in the buffer */ + +static int putc_flush (putbuff* pb) +{ + UINT nw; + + if ( pb->idx >= 0 /* Flush buffered characters to the file */ + && f_write(pb->fp, pb->buf, (UINT)pb->idx, &nw) == FR_OK + && (UINT)pb->idx == nw) return pb->nchr; + return -1; +} + + +/* Initialize write buffer */ + +static void putc_init (putbuff* pb, FIL* fp) +{ + memset(pb, 0, sizeof (putbuff)); + pb->fp = fp; +} + + + +int f_putc ( + TCHAR c, /* A character to be output */ + FIL* fp /* Pointer to the file object */ +) +{ + putbuff pb; + + + putc_init(&pb, fp); + putc_bfd(&pb, c); /* Put the character */ + return putc_flush(&pb); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Put a String to the File */ +/*-----------------------------------------------------------------------*/ + +int f_puts ( + const TCHAR* str, /* Pointer to the string to be output */ + FIL* fp /* Pointer to the file object */ +) +{ + putbuff pb; + + + putc_init(&pb, fp); + while (*str) putc_bfd(&pb, *str++); /* Put the string */ + return putc_flush(&pb); +} + + + + +/*-----------------------------------------------------------------------*/ +/* Put a Formatted String to the File (with sub-functions) */ +/*-----------------------------------------------------------------------*/ +#if FF_PRINT_FLOAT && FF_INTDEF == 2 +#include + +static int ilog10 (double n) /* Calculate log10(n) in integer output */ +{ + int rv = 0; + + while (n >= 10) { /* Decimate digit in right shift */ + if (n >= 100000) { + n /= 100000; rv += 5; + } else { + n /= 10; rv++; + } + } + while (n < 1) { /* Decimate digit in left shift */ + if (n < 0.00001) { + n *= 100000; rv -= 5; + } else { + n *= 10; rv--; + } + } + return rv; +} + + +static double i10x (int n) /* Calculate 10^n in integer input */ +{ + double rv = 1; + + while (n > 0) { /* Left shift */ + if (n >= 5) { + rv *= 100000; n -= 5; + } else { + rv *= 10; n--; + } + } + while (n < 0) { /* Right shift */ + if (n <= -5) { + rv /= 100000; n += 5; + } else { + rv /= 10; n++; + } + } + return rv; +} + + +static void ftoa ( + char* buf, /* Buffer to output the floating point string */ + double val, /* Value to output */ + int prec, /* Number of fractional digits */ + TCHAR fmt /* Notation */ +) +{ + int d; + int e = 0, m = 0; + char sign = 0; + double w; + const char *er = 0; + const char ds = FF_PRINT_FLOAT == 2 ? ',' : '.'; + + + if (isnan(val)) { /* Not a number? */ + er = "NaN"; + } else { + if (prec < 0) prec = 6; /* Default precision? (6 fractional digits) */ + if (val < 0) { /* Negative? */ + val = 0 - val; sign = '-'; + } else { + sign = '+'; + } + if (isinf(val)) { /* Infinite? */ + er = "INF"; + } else { + if (fmt == 'f') { /* Decimal notation? */ + val += i10x(0 - prec) / 2; /* Round (nearest) */ + m = ilog10(val); + if (m < 0) m = 0; + if (m + prec + 3 >= SZ_NUM_BUF) er = "OV"; /* Buffer overflow? */ + } else { /* E notation */ + if (val != 0) { /* Not a true zero? */ + val += i10x(ilog10(val) - prec) / 2; /* Round (nearest) */ + e = ilog10(val); + if (e > 99 || prec + 7 >= SZ_NUM_BUF) { /* Buffer overflow or E > +99? */ + er = "OV"; + } else { + if (e < -99) e = -99; + val /= i10x(e); /* Normalize */ + } + } + } + } + if (!er) { /* Not error condition */ + if (sign == '-') *buf++ = sign; /* Add a - if negative value */ + do { /* Put decimal number */ + if (m == -1) *buf++ = ds; /* Insert a decimal separator when get into fractional part */ + w = i10x(m); /* Snip the highest digit d */ + d = (int)(val / w); val -= d * w; + *buf++ = (char)('0' + d); /* Put the digit */ + } while (--m >= -prec); /* Output all digits specified by prec */ + if (fmt != 'f') { /* Put exponent if needed */ + *buf++ = (char)fmt; + if (e < 0) { + e = 0 - e; *buf++ = '-'; + } else { + *buf++ = '+'; + } + *buf++ = (char)('0' + e / 10); + *buf++ = (char)('0' + e % 10); + } + } + } + if (er) { /* Error condition */ + if (sign) *buf++ = sign; /* Add sign if needed */ + do { /* Put error symbol */ + *buf++ = *er++; + } while (*er); + } + *buf = 0; /* Term */ +} +#endif /* FF_PRINT_FLOAT && FF_INTDEF == 2 */ + + + +int f_printf ( + FIL* fp, /* Pointer to the file object */ + const TCHAR* fmt, /* Pointer to the format string */ + ... /* Optional arguments... */ +) +{ + va_list arp; + putbuff pb; + UINT i, j, w, f, r; + int prec; +#if FF_PRINT_LLI && FF_INTDEF == 2 + QWORD v; +#else + DWORD v; +#endif + TCHAR *tp; + TCHAR tc, pad; + TCHAR nul = 0; + char d, str[SZ_NUM_BUF]; + + + putc_init(&pb, fp); + + va_start(arp, fmt); + + for (;;) { + tc = *fmt++; + if (tc == 0) break; /* End of format string */ + if (tc != '%') { /* Not an escape character (pass-through) */ + putc_bfd(&pb, tc); + continue; + } + f = w = 0; pad = ' '; prec = -1; /* Initialize parms */ + tc = *fmt++; + if (tc == '0') { /* Flag: '0' padded */ + pad = '0'; tc = *fmt++; + } else if (tc == '-') { /* Flag: Left aligned */ + f = 2; tc = *fmt++; + } + if (tc == '*') { /* Minimum width from an argument */ + w = va_arg(arp, int); + tc = *fmt++; + } else { + while (IsDigit(tc)) { /* Minimum width */ + w = w * 10 + tc - '0'; + tc = *fmt++; + } + } + if (tc == '.') { /* Precision */ + tc = *fmt++; + if (tc == '*') { /* Precision from an argument */ + prec = va_arg(arp, int); + tc = *fmt++; + } else { + prec = 0; + while (IsDigit(tc)) { /* Precision */ + prec = prec * 10 + tc - '0'; + tc = *fmt++; + } + } + } + if (tc == 'l') { /* Size: long int */ + f |= 4; tc = *fmt++; +#if FF_PRINT_LLI && FF_INTDEF == 2 + if (tc == 'l') { /* Size: long long int */ + f |= 8; tc = *fmt++; + } +#endif + } + if (tc == 0) break; /* End of format string */ + switch (tc) { /* Atgument type is... */ + case 'b': /* Unsigned binary */ + r = 2; break; + + case 'o': /* Unsigned octal */ + r = 8; break; + + case 'd': /* Signed decimal */ + case 'u': /* Unsigned decimal */ + r = 10; break; + + case 'x': /* Unsigned hexadecimal (lower case) */ + case 'X': /* Unsigned hexadecimal (upper case) */ + r = 16; break; + + case 'c': /* Character */ + putc_bfd(&pb, (TCHAR)va_arg(arp, int)); + continue; + + case 's': /* String */ + tp = va_arg(arp, TCHAR*); /* Get a pointer argument */ + if (!tp) tp = &nul; /* Null ptr generates a null string */ + for (j = 0; tp[j]; j++) ; /* j = tcslen(tp) */ + if (prec >= 0 && j > (UINT)prec) j = prec; /* Limited length of string body */ + for ( ; !(f & 2) && j < w; j++) putc_bfd(&pb, pad); /* Left pads */ + while (*tp && prec--) putc_bfd(&pb, *tp++); /* Body */ + while (j++ < w) putc_bfd(&pb, ' '); /* Right pads */ + continue; +#if FF_PRINT_FLOAT && FF_INTDEF == 2 + case 'f': /* Floating point (decimal) */ + case 'e': /* Floating point (e) */ + case 'E': /* Floating point (E) */ + ftoa(str, va_arg(arp, double), prec, tc); /* Make a floating point string */ + for (j = strlen(str); !(f & 2) && j < w; j++) putc_bfd(&pb, pad); /* Left pads */ + for (i = 0; str[i]; putc_bfd(&pb, str[i++])) ; /* Body */ + while (j++ < w) putc_bfd(&pb, ' '); /* Right pads */ + continue; +#endif + default: /* Unknown type (pass-through) */ + putc_bfd(&pb, tc); continue; + } + + /* Get an integer argument and put it in numeral */ +#if FF_PRINT_LLI && FF_INTDEF == 2 + if (f & 8) { /* long long argument? */ + v = (QWORD)va_arg(arp, long long); + } else if (f & 4) { /* long argument? */ + v = (tc == 'd') ? (QWORD)(long long)va_arg(arp, long) : (QWORD)va_arg(arp, unsigned long); + } else { /* int/short/char argument */ + v = (tc == 'd') ? (QWORD)(long long)va_arg(arp, int) : (QWORD)va_arg(arp, unsigned int); + } + if (tc == 'd' && (v & 0x8000000000000000)) { /* Negative value? */ + v = 0 - v; f |= 1; + } +#else + if (f & 4) { /* long argument? */ + v = (DWORD)va_arg(arp, long); + } else { /* int/short/char argument */ + v = (tc == 'd') ? (DWORD)(long)va_arg(arp, int) : (DWORD)va_arg(arp, unsigned int); + } + if (tc == 'd' && (v & 0x80000000)) { /* Negative value? */ + v = 0 - v; f |= 1; + } +#endif + i = 0; + do { /* Make an integer number string */ + d = (char)(v % r); v /= r; + if (d > 9) d += (tc == 'x') ? 0x27 : 0x07; + str[i++] = d + '0'; + } while (v && i < SZ_NUM_BUF); + if (f & 1) str[i++] = '-'; /* Sign */ + /* Write it */ + for (j = i; !(f & 2) && j < w; j++) { /* Left pads */ + putc_bfd(&pb, pad); + } + do { /* Body */ + putc_bfd(&pb, (TCHAR)str[--i]); + } while (i); + while (j++ < w) { /* Right pads */ + putc_bfd(&pb, ' '); + } + } + + va_end(arp); + + return putc_flush(&pb); +} + +#endif /* !FF_FS_READONLY */ +#endif /* FF_USE_STRFUNC */ + + + +#if FF_CODE_PAGE == 0 +/*-----------------------------------------------------------------------*/ +/* Set Active Codepage for the Path Name */ +/*-----------------------------------------------------------------------*/ + +FRESULT f_setcp ( + WORD cp /* Value to be set as active code page */ +) +{ + static const WORD validcp[22] = { 437, 720, 737, 771, 775, 850, 852, 855, 857, 860, 861, 862, 863, 864, 865, 866, 869, 932, 936, 949, 950, 0}; + static const BYTE *const tables[22] = {Ct437, Ct720, Ct737, Ct771, Ct775, Ct850, Ct852, Ct855, Ct857, Ct860, Ct861, Ct862, Ct863, Ct864, Ct865, Ct866, Ct869, Dc932, Dc936, Dc949, Dc950, 0}; + UINT i; + + + for (i = 0; validcp[i] != 0 && validcp[i] != cp; i++) ; /* Find the code page */ + if (validcp[i] != cp) return FR_INVALID_PARAMETER; /* Not found? */ + + CodePage = cp; + if (cp >= 900) { /* DBCS */ + ExCvt = 0; + DbcTbl = tables[i]; + } else { /* SBCS */ + ExCvt = tables[i]; + DbcTbl = 0; + } + return FR_OK; +} +#endif /* FF_CODE_PAGE == 0 */ + diff --git a/stm32f103_lcds_st75256/Core/Src/main.c b/stm32f103_lcds_st75256/Core/Src/main.c index 6165a69..7d55ea6 100644 --- a/stm32f103_lcds_st75256/Core/Src/main.c +++ b/stm32f103_lcds_st75256/Core/Src/main.c @@ -21,7 +21,9 @@ /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ +#include "app_main.h" #include "bsp_lcd_st75256.h" +#include "bsp_sd_spi.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ @@ -41,523 +43,15 @@ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi1; +SPI_HandleTypeDef hspi2; DMA_HandleTypeDef hdma_spi1_tx; +DMA_HandleTypeDef hdma_spi2_rx; +DMA_HandleTypeDef hdma_spi2_tx; + +TIM_HandleTypeDef htim4; /* USER CODE BEGIN PV */ -const unsigned char image_4gray_256x128[8192] = { - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X55,0X00,0X00,0X00,0X00,0X40,0X50,0X50,0X40,0X00,0X00, - 0X00,0X01,0X00,0X00,0X01,0X55,0X50,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X10,0X00,0X00,0X00,0X00,0X01, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X10,0X40,0X40,0X01,0X05,0X14,0X50,0X41,0X01,0X00,0X00,0X01,0X01,0XD0, - 0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X6F, - 0X5B,0X96,0XE5,0XF9,0XFD,0XFE,0XFE,0XBE,0XBE,0XBF,0XBE,0XFE,0XFE,0XBD,0XB9,0XB5, - 0XB5,0XB9,0XB9,0XB9,0XBD,0X8E,0X87,0X91,0X54,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X05,0X04,0X04,0X05,0X01,0X01,0X00,0X00,0X01,0X05,0X04, - 0X14,0X10,0X51,0X54,0X40,0X40,0X55,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X80, - 0X90,0X40,0X80,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XA4,0X5A,0X56,0X52,0X46, - 0X09,0X01,0XC1,0X41,0X02,0X09,0X14,0X90,0X40,0X00,0X00,0X00,0X80,0X90,0XA0,0X74, - 0X9C,0X5E,0X0A,0XE2,0X66,0X05,0X09,0X18,0X60,0X80,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X80,0X10,0X05,0X01,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X40,0X40,0X90,0X50,0X10,0X14,0X14,0X14,0X04,0X04,0X04,0X04,0X04,0X04,0X04, - 0X40,0X80,0X80,0X50,0X50,0X60,0X10,0X14,0X18,0X18,0X18,0X18,0X18,0X14,0X14,0X20, - 0X10,0X50,0X80,0X80,0X40,0X00,0X00,0X00,0X00,0X01,0X05,0X14,0X00,0X80,0XF9,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XFF,0XFF,0XFF,0XFF,0XFF,0X6F,0X46,0XE5, - 0XFE,0XBF,0X6F,0X9B,0XE7,0XF6,0XF9,0XFD,0XBD,0X7D,0X0E,0X01,0X50,0X14,0X14,0X04, - 0X00,0X00,0X40,0X00,0X00,0X01,0X40,0XA5,0X6A,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XA8,0X06, - 0X00,0X40,0XB0,0X02,0X08,0X08,0X08,0X04,0X04,0X28,0X2A,0X52,0X55,0X55,0X86,0XA9, - 0X29,0X0A,0X01,0X04,0X04,0X90,0X50,0X34,0X16,0X01,0X02,0X07,0X06,0X24,0X55,0X95, - 0X5A,0X19,0X16,0X01,0X01,0X00,0X44,0X50,0X90,0X61,0X75,0X42,0X06,0X09,0X18,0X60, - 0X80,0X40,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X80,0X74,0X0E,0X01,0X00,0X00,0X40,0X80,0X90,0X60,0X54,0X58,0X55, - 0X55,0X55,0X55,0X51,0X54,0X54,0X55,0X54,0X10,0X00,0X84,0X90,0X20,0X28,0X09,0X06, - 0X02,0X41,0X40,0X80,0X80,0X80,0X80,0X90,0X90,0X90,0X90,0X90,0X90,0X90,0X90,0X90, - 0X90,0X90,0X80,0X81,0X82,0X42,0X49,0X08,0X24,0X20,0X40,0X40,0XF4,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFA,0XF4,0XFA,0XBF, - 0X5B,0XE6,0XFE,0XFF,0XFF,0XFF,0XFF,0X6F,0X02,0X00,0X00,0X00,0X10,0X04,0X08,0X05, - 0X85,0XC1,0XE0,0XB4,0X68,0X59,0X56,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X80,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0XAA,0X00,0X00, - 0X15,0X06,0X01,0X00,0X04,0X54,0XA0,0X59,0X0B,0X50,0X50,0X10,0X04,0X04,0X02,0X41, - 0X40,0X00,0X10,0X10,0X01,0X01,0X00,0X00,0X00,0X01,0X05,0X00,0X00,0X00,0X01,0X02, - 0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X00,0X00,0X00,0X01,0X41,0X24,0X10,0X50, - 0X60,0X20,0X01,0X02,0X06,0X0C,0X24,0X90,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X80,0X70,0X0D,0X02,0XC0,0XE0,0X74,0X58,0X5A,0X96,0XA5,0X65,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X15,0X85,0XA1,0X64,0X8D,0X92,0X22,0X24,0X18,0X08,0X09,0X06, - 0X02,0X02,0X01,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X01,0X00,0X44, - 0X44,0X54,0X44,0X11,0X11,0X52,0X42,0X06,0X0A,0X84,0XF8,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XD7,0XE6,0XE6,0XF5,0XF5, - 0XF9,0XFF,0XFF,0XFF,0XFF,0XFF,0XDB,0XD0,0X00,0X00,0X00,0X00,0X00,0X40,0XF4,0XBE, - 0XEB,0XAB,0X56,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X80,0X50,0X80,0X40,0X40,0X80,0X80,0X40,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X60,0X4C,0X07,0X57,0X6D,0XE0,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XAA,0X55,0X54,0X00, - 0X00,0X00,0X00,0X00,0X40,0X11,0X01,0X00,0X40,0X00,0X10,0X00,0X04,0X41,0X81,0X60, - 0X24,0X98,0XA8,0X69,0X09,0X05,0X05,0X08,0X18,0X24,0X60,0XE0,0X90,0X10,0X10,0X14, - 0X14,0X14,0X04,0X08,0X08,0X04,0X05,0X05,0X05,0X05,0X05,0X05,0X06,0X01,0X01,0X01, - 0X02,0X02,0X05,0X05,0X05,0X04,0X04,0X04,0X06,0X1D,0X2C,0X24,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X80,0X74,0X4D, - 0XD2,0XB4,0XAD,0X9B,0XA6,0X99,0XF5,0X69,0X9A,0XA6,0X69,0X55,0X55,0X55,0X55,0X55, - 0X55,0X95,0XA5,0X2C,0X4E,0X87,0XC2,0XD1,0XD0,0XE0,0XE0,0XA0,0XA0,0XA0,0X60,0X50, - 0X50,0X50,0X50,0X40,0X40,0X40,0X40,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X81,0XC1,0X85,0X45,0X84,0XC0,0XF0,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XFB, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XEB,0XE1,0X1A,0X01,0X00,0X00,0X80,0XF8,0XBF,0XFB,0XBF, - 0X6A,0X95,0X95,0X65,0X65,0X65,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X02,0X1E,0X9B,0X56,0X4E,0X16,0X56,0X17,0X6B,0X7D,0X64,0X10,0XB0,0XF0, - 0XE0,0XC0,0X40,0X59,0X02,0X00,0X00,0X14,0X92,0X5E,0XA4,0XC0,0XC0,0XC0,0XC0,0XC0, - 0XD0,0XD0,0XD0,0XE0,0XE0,0X40,0X00,0X40,0XC0,0X80,0X40,0XA5,0X16,0X41,0XF9,0XFC, - 0XF8,0XA0,0X44,0X91,0X60,0X18,0X09,0X41,0X80,0X90,0XA0,0X24,0X05,0X42,0X01,0X54, - 0XE9,0XA6,0X25,0X18,0X08,0X05,0X05,0X05,0X05,0X05,0X05,0X08,0X16,0X2D,0XB0,0X80, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X24,0XDA,0XF5,0XAD,0XAB, - 0XAA,0XAA,0XAA,0XBA,0XAE,0XAB,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0X69,0X95,0XE5,0XF9, - 0XFE,0XBF,0XBE,0X6F,0X9F,0X9B,0X97,0XA6,0XA6,0XA5,0X55,0X65,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X15,0X15,0X15,0X14,0X14,0X54,0X50,0X80, - 0X80,0X91,0X97,0X5F,0X97,0XF7,0XF6,0XF1,0XE1,0XF2,0XF1,0XF5,0XFD,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFB,0XFB, - 0XFF,0XFF,0XFF,0XFF,0XFF,0X7F,0X07,0X00,0X00,0X00,0X00,0X15,0X7F,0X3F,0X2F,0X0E, - 0X02,0X41,0XD0,0XB0,0X68,0X59,0X56,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X01,0X06,0X05,0X05,0X09,0XFA,0XF8,0XFD,0XF9,0XF5,0XD0,0X82, - 0X47,0X1F,0X3F,0XFF,0XFE,0X40,0X00,0X00,0X20,0X9A,0X9E,0XF6,0X7B,0X7B,0XFB,0XFB, - 0XFB,0XBF,0XFF,0XFF,0XE9,0X69,0XE5,0XFA,0XAE,0XBF,0XFF,0XFD,0XB8,0XBF,0XFF,0XFF, - 0XFB,0X76,0X25,0X18,0X08,0X06,0X02,0X81,0X10,0X05,0X40,0X04,0X05,0X00,0X40,0XFA, - 0X25,0X58,0X59,0X4A,0X4A,0X9A,0X99,0X99,0X98,0XA8,0X64,0XB0,0XE0,0X80,0X40,0X01, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XC0,0XC0,0XD0,0XD0,0XD0,0XD0, - 0XD0,0XD0,0XD0,0XD0,0XD0,0XC0,0XD0,0XD0,0XD4,0XF5,0XF8,0XAF,0XAB,0XEA,0XAA,0X7A, - 0XBE,0XFF,0XFF,0XAF,0XAE,0XAE,0XAA,0XAE,0XBE,0XFA,0XEA,0XFA,0XFE,0XEF,0XEB,0XEB, - 0XEA,0XA9,0XDA,0XDA,0XEA,0XE6,0XE6,0XE6,0XE5,0XF9,0XF9,0XF9,0XF9,0XF5,0XF5,0XF9, - 0XF9,0XF9,0XF9,0XF9,0XF9,0XF9,0XF9,0XFD,0XFD,0XFE,0XFE,0XFE,0XFE,0XFF,0XFF,0XFF, - 0XFF,0XFD,0XF6,0XD9,0X85,0X53,0X53,0X43,0X42,0X41,0X83,0X43,0X8F,0XBF,0XFF,0XBF, - 0X7F,0X3F,0X3F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBE,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0X7D,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0XC0,0XF0, - 0X7D,0X5B,0X56,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X40,0XA0,0X64,0X24,0X90,0XE0,0XBC,0XEF,0XFF,0XFF,0X5F,0XFA,0XF8,0XFF,0XFF, - 0XFF,0XFD,0XFC,0XF0,0XE3,0XDF,0XFF,0XFE,0XFC,0XBC,0X39,0XB6,0XEA,0XEE,0XAA,0XF6, - 0XFA,0XE9,0X69,0XEA,0XE6,0XE6,0XA7,0X5F,0X6E,0X8A,0X56,0X38,0XBD,0XFF,0XFF,0XFF, - 0XAE,0X80,0XD0,0XF0,0XB4,0X3C,0X0A,0X01,0X00,0X00,0X00,0X00,0X00,0X40,0XAA,0X5A, - 0X54,0X55,0X15,0X05,0X06,0X02,0X01,0X81,0XD1,0XE1,0XF5,0XF8,0XE9,0XEA,0XEA,0XAA, - 0XAE,0XAC,0XB0,0XC0,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X40,0XF4,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFD,0XFD,0XBE,0XFD, - 0XF8,0XBD,0XAF,0XAF,0XAE,0X7D,0XFD,0XFD,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBE,0X7E,0X9A,0XA6,0XAA,0XAA,0X65,0X64,0XF8,0XFE, - 0XF9,0XFC,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XFF,0XFF,0XFE,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFC,0XB4,0X00,0X40,0XC0,0XF0,0XBC,0XFF,0XAB,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X01,0X07,0X85,0XFD,0XAE,0XFF,0XFA,0X96,0X47,0X5B,0X55,0X6F,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XF1,0XD8,0XA9,0XAA,0XAA,0XAA,0XAA,0XAA, - 0XAB,0XAB,0XAB,0X56,0XAA,0XAA,0XEB,0XEA,0XFA,0XFA,0XFE,0XFE,0XFE,0XFF,0XFF,0XFF, - 0XBF,0X7F,0X1E,0X53,0X40,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0XA9,0X5A,0X15, - 0X05,0X40,0X90,0X60,0X64,0X5D,0X4F,0X57,0X17,0X52,0X92,0X65,0X65,0X65,0X66,0X96, - 0X5E,0XBA,0XEA,0XAA,0X6E,0XE4,0X44,0X08,0X08,0X14,0X44,0X04,0X24,0XA0,0X40,0X00, - 0X00,0X00,0X00,0X00,0X00,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X6F,0X96,0XFA,0XFF, - 0XFF,0XFD,0XF5,0XEA,0XFA,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XBF,0X9B,0X66,0XD5,0XE1,0XF1,0XE1,0XE1,0XE1,0XF8,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFE,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFE,0XA5, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XC0,0X80,0X80,0XA0,0X60,0X60,0XF0,0XC0,0X00, - 0X00,0X80,0XF9,0XAF,0XFE,0X6F,0XD7,0XF6,0XBD,0XFE,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XAF,0X6F,0X6F,0X7F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XBE,0XEA,0X5A, - 0X46,0XE2,0XF9,0XD5,0X8A,0X7A,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X6F,0X07, - 0X51,0X00,0X00,0X05,0X50,0X02,0X06,0X19,0X54,0X54,0X54,0X95,0XB9,0X56,0X55,0X19, - 0X06,0X01,0X01,0X01,0X01,0X40,0X90,0X64,0X2D,0X5F,0X1E,0X1E,0X2D,0X28,0X24,0X24, - 0X21,0X51,0X52,0X4B,0X5E,0X7A,0XF9,0XD0,0X40,0X40,0X50,0X00,0X00,0X41,0X6A,0X00, - 0X00,0X00,0X00,0X40,0XE9,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X6F,0X97,0XD5,0XFE,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFC,0XF0,0XD2,0XD4,0X92,0X97,0X47,0X03,0X51,0X91,0X92,0X83,0X9F,0X7F, - 0X3F,0XFF,0XBF,0X7F,0X7F,0X7F,0X3F,0X3F,0X2F,0X2F,0X1F,0X1F,0X0F,0X2F,0X7F,0XAF, - 0XAB,0XAB,0XAB,0XAB,0X9F,0XAF,0X7F,0XBF,0XAE,0XBF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFA, - 0X95,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X01,0X0A,0X1D,0X57,0X85,0X69,0X34,0X74,0X34,0X39,0X2E, - 0X0E,0X2F,0X7E,0XFF,0XDA,0XEF,0XFF,0XBE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFE,0XFD,0XFE,0XFF,0XFF,0XFF,0XFF,0XBF,0X5F,0XE3,0XB8,0XAF,0XAB,0XAF, - 0XEF,0XBF,0X1F,0XD3,0XF8,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XAF,0X1B,0X50,0X55, - 0X45,0X00,0X00,0X00,0X10,0X54,0X00,0X00,0X01,0X40,0X06,0X69,0X94,0X55,0X00,0X00, - 0X00,0X00,0X00,0X00,0X90,0X6A,0X56,0X54,0X15,0X05,0X01,0X00,0X40,0X80,0XC0,0X80, - 0XC0,0X80,0X90,0X80,0X41,0X02,0X0A,0X2A,0XE2,0XE2,0XE0,0X54,0X44,0X81,0XC0,0XE0, - 0XB0,0X78,0XAD,0XEF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XA9,0X95,0XAA,0XAA, - 0XAB,0XEF,0XFF,0XFF,0X7F,0XFF,0XEB,0XF7,0XF9,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0X3F,0X3F, - 0X2F,0X2F,0X2F,0X2F,0X3F,0X3F,0X3F,0X3F,0XBF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0X7F,0XAF,0XAF,0XAF,0XAF,0XAF,0XAF,0XDF,0XEF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XBF,0X7F,0X1F,0X0B,0X43,0XF1,0X7D,0X9F,0XAA,0XB5,0X16,0X56,0X1D,0X4D, - 0X51,0X11,0X00,0X90,0X90,0X94,0XC8,0XD5,0X65,0X24,0X38,0X24,0X20,0X10,0X50,0X42, - 0X5A,0XBA,0XAA,0X9A,0X9A,0XAA,0X6A,0XAA,0XAA,0XAA,0XAA,0XAB,0XAF,0XBF,0XFF,0XFF, - 0XFE,0XA9,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X07,0X0A,0X1D,0X09,0X0F,0X68,0XE0, - 0XE5,0XE0,0X90,0X91,0XD2,0X87,0X8B,0X4F,0X2F,0X7F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X7F,0X47,0XA4,0XAE,0XAA,0XAA,0XAA,0XAA,0X6A, - 0XE6,0XF8,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XAF,0XAB,0X1A,0X51,0X55,0X15,0X05, - 0X40,0XD0,0X60,0X18,0X45,0X55,0X00,0X00,0X00,0X01,0X14,0X01,0X56,0X95,0X55,0X40, - 0X00,0X00,0X00,0X40,0XAE,0XA9,0X91,0XE0,0XB4,0X78,0X79,0XB5,0XA1,0XD2,0X82,0X0A, - 0X7A,0XFA,0XA9,0XF4,0X81,0X06,0X05,0X08,0X10,0X67,0XEA,0XEF,0XAF,0XBB,0XFA,0XFA, - 0XAE,0X6A,0X77,0X3A,0X3E,0X7A,0XFB,0XFB,0XFF,0XFF,0X6F,0X6B,0X97,0X6A,0XEF,0XFE, - 0XEB,0X96,0X1D,0X5B,0X91,0X94,0X92,0X57,0X0B,0X1F,0X7F,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFC,0XF8,0XF0,0XD0, - 0XC0,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X6A,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XAB, - 0XAA,0XAA,0XEA,0XFA,0XFA,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0X7F,0X6F,0X5B, - 0X1B,0X16,0X05,0X00,0X00,0X01,0X02,0X11,0X5A,0X01,0X00,0X55,0X54,0X95,0X60,0X14, - 0X04,0X05,0XC2,0XF5,0XFE,0X3F,0X0B,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X01,0X56,0X56,0X56,0X5A,0X5E,0X69,0X7A,0XAA,0X9A,0X6A,0XAA,0XAA,0XAB, - 0XBF,0XFE,0XE5,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0XE9,0XFF, - 0XFA,0X5B,0XA9,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFE,0XFE,0XFE,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0X07,0XA4,0XAA,0XAA,0XAA,0XAA,0XAA,0XEA,0XFA,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XAF,0XA7,0X1A,0X46,0X14,0X05,0X41,0XD0,0X74,0X1D, - 0X47,0X11,0X14,0X05,0X55,0X55,0X00,0X00,0X00,0X00,0X01,0X00,0X00,0X6A,0X95,0X55, - 0X00,0X00,0X00,0XB9,0X6B,0X97,0X82,0X01,0X00,0X00,0X00,0X50,0X40,0X01,0X03,0X0A, - 0X00,0X00,0X6B,0XFE,0XFE,0XD5,0X05,0X18,0X24,0X54,0X56,0X1B,0X1F,0X0F,0X0B,0X02, - 0X40,0X04,0X00,0XE0,0XF8,0XF8,0XF4,0XD3,0X1F,0X6F,0XAA,0XB9,0XBA,0XFA,0XBD,0XFE, - 0XAF,0XAB,0XA7,0XA3,0XA7,0XAF,0XAA,0XA1,0XD6,0X89,0X28,0X61,0XD3,0X8B,0X2F,0X7F, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFD,0XFC,0XF4,0XF0,0XF0,0XF4,0XFB,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0X3F,0X1F,0X0B,0X03,0X01,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X80,0X60,0X1E,0X42,0X80,0XC0,0XA0, - 0XA8,0XBF,0XFF,0XEB,0XA1,0XB0,0XB0,0XF0,0XF0,0XF0,0XE0,0XD0,0XD0,0XC0,0XC0,0X80, - 0X40,0X00,0X00,0X01,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X56,0X5A,0X69,0XEA,0XAA, - 0XAA,0XAB,0XBF,0XF9,0X95,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X14,0XA9,0X89,0XDD,0XFE,0XAB, - 0X6F,0X6D,0X56,0X6F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0X6F,0X41,0XA9,0XA6,0XA6,0XAA,0X9A,0XFA,0XFE,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XBF,0XAF,0X6B,0X5A,0X56,0X15,0X05,0XD0,0X74,0X1D,0X47,0X11,0X04,0X01, - 0X10,0X04,0X01,0X01,0X05,0X00,0X00,0X00,0X55,0X40,0X01,0X00,0X00,0X05,0X55,0X55, - 0X14,0X00,0X14,0X05,0X90,0XF4,0XB4,0XA0,0X90,0XC0,0X40,0X10,0X55,0X50,0X40,0X10, - 0X09,0X01,0X00,0X00,0X02,0X0B,0X2E,0X78,0XA4,0X60,0X90,0X41,0X81,0X80,0X40,0X40, - 0X41,0XC0,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0X15,0X00,0XBA,0XB9,0XFF,0XFA,0XB5,0XAF, - 0XDA,0XFA,0XFA,0XFA,0XAA,0X6A,0XDA,0XDA,0XEA,0XAA,0XAB,0XAD,0XB8,0XE2,0XC6,0X4C, - 0X25,0X97,0X9F,0XBF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFE,0XFD,0XFC,0XF8,0XF0,0XE0,0XE0,0XE0,0X50,0X90, - 0X50,0X90,0X80,0X10,0X10,0X10,0X04,0XE4,0XFD,0XFE,0XFE,0X7F,0X3F,0X6F,0X6D,0X6C, - 0X2E,0X0D,0X0F,0X0B,0X0B,0X0A,0X0A,0X0A,0X0B,0X1F,0X1F,0X2F,0X2F,0X7F,0XBF,0XFF, - 0XFF,0XFF,0XFD,0XFC,0XF8,0XF5,0XE5,0XD5,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X5B, - 0X6E,0XEA,0XAA,0XAB,0XFE,0XE5,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X10,0X68,0X74,0X64,0X64,0XB0,0XB0,0XE1,0XF2,0XFF,0XAA, - 0XBF,0X5D,0XE5,0XFA,0XFC,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XAF,0X5F,0X5F,0XFF,0XFF, - 0XFF,0XFF,0XFF,0X6F,0X40,0XAA,0XAA,0XAA,0XEA,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF, - 0X2F,0X4A,0X52,0X64,0X09,0X42,0XA0,0X28,0X06,0X41,0X14,0X05,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X15,0X55,0X00,0X00,0X00,0X54,0XA9,0X55, - 0X14,0X00,0X00,0X90,0XFF,0XFB,0XF6,0XAA,0X9A,0XA5,0X29,0X44,0X05,0X01,0X55,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X02,0X0E,0X79,0XE4,0X87,0X1F,0XFF,0XFF, - 0XC7,0X07,0X7F,0XFF,0XFF,0XBF,0XBF,0XBD,0X85,0XE5,0XFD,0XFA,0XFE,0XFE,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFE,0XAA,0XAA,0XAA,0XAA,0XAA,0XAB, - 0XAD,0XB8,0XE2,0XC7,0X5F,0X3F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X7F,0XBF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X3E,0X1F, - 0X56,0XA0,0X65,0X1C,0X98,0X3D,0X0F,0X07,0X02,0X01,0X90,0XA4,0XA9,0X5A,0XE9,0XBA, - 0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X01,0X02,0X07,0X1F,0X7F,0XFF,0XFF,0XFF,0XFF,0XFD,0XF1,0X85,0X15,0X55,0X55,0X55, - 0X55,0X5A,0XAF,0XA9,0XBF,0XFF,0XBA,0XE5,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X02,0X09,0X09,0X26,0XBF,0XBE, - 0XBE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0X05,0XA9,0XEA,0XFA,0XFF,0XBF,0XBF,0XFF,0X7F,0X1F,0X47,0X52,0X50, - 0X54,0X05,0X41,0XE0,0X68,0X06,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X40,0X10,0X00,0X00,0X00,0X10,0X41,0X04,0X00,0X01,0X15,0X50,0X64,0X1E,0X01,0X00, - 0X00,0X40,0XB8,0XFF,0XEB,0X4B,0X07,0X03,0X02,0X00,0X50,0X05,0X00,0X55,0X05,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X02,0X0B,0X3D,0XE6,0XDB, - 0XFF,0X7F,0XBE,0XFF,0XFF,0XFA,0XFA,0XFF,0XBF,0XBF,0XBF,0XBF,0XFF,0XEF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEB,0X0F,0X1E,0X2E,0X3E,0X3A, - 0X7A,0XBA,0XFE,0XFF,0XFF,0XFD,0XF8,0XF2,0XD7,0XDF,0X7F,0XBF,0XEE,0X8A,0X9F,0XFF, - 0XFF,0XFF,0XFF,0XFF,0X6F,0X19,0X1F,0XFF,0XFF,0XFF,0XFF,0XFF,0X9F,0X07,0X0B,0XAF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X7F,0X2F,0X1F,0X97,0XA6,0X00,0X40,0XA4, - 0XAD,0X9A,0X69,0X0A,0X01,0X00,0X00,0X00,0X00,0X65,0X51,0X9A,0X9A,0XA6,0X1A,0X01, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X55,0X55,0X55,0X57,0X5F,0XBF,0XFF,0XFF,0XFF,0XFD,0XE0,0X45,0X55, - 0X55,0X55,0X56,0XAA,0XFA,0XFF,0XAA,0XAB,0XBE,0XA5,0X95,0X55,0X55,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X01,0X02,0X03,0X03,0X07,0X0B,0X0F,0X0F,0X1F,0X2F,0X3F,0X3F,0XBF,0XFF, - 0XFF,0XFF,0XEB,0XE0,0X7E,0X9F,0XF7,0XFA,0X06,0X52,0X55,0X55,0X55,0X55,0X05,0X41, - 0XE0,0XBC,0X5B,0X02,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X50,0X14,0X01, - 0X00,0X00,0X40,0X14,0X05,0X01,0X00,0X00,0X00,0X00,0X00,0X01,0X04,0X00,0X40,0X50, - 0X54,0X6A,0X15,0X01,0X02,0X06,0X04,0X40,0X10,0X05,0X00,0X00,0X54,0X15,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X6B,0XBF, - 0XDB,0XC3,0X1F,0X7F,0XFB,0XEB,0XFE,0XFE,0XFF,0XA9,0X59,0X69,0XA4,0X91,0X4B,0XFF, - 0XFF,0XEF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XFF,0XFF,0XF8,0XD0,0X40,0X00,0X00, - 0X00,0X00,0X01,0X16,0XA6,0X97,0X5B,0X0B,0X1F,0X3F,0XBF,0XFE,0XBD,0XB9,0XFB,0XE7, - 0XDB,0XDF,0XAF,0XBF,0XFF,0XFD,0XFD,0XFF,0XFF,0XFF,0XFF,0XBF,0XFF,0X7F,0X3F,0X3F, - 0X3F,0X1F,0X0F,0X0B,0X03,0X83,0XC1,0X51,0X65,0XB5,0XB9,0XFE,0X6A,0X0A,0X07,0X91, - 0X29,0X06,0X00,0X00,0X00,0X00,0X00,0X00,0X10,0X1E,0X06,0X02,0X01,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X5B,0XBF,0XFF,0XFF,0XFF,0XFE,0X50, - 0X55,0X55,0X55,0XFA,0XFF,0XAB,0XAA,0XAA,0XAA,0XAA,0XAA,0XA9,0X95,0X55,0X55,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40, - 0XE1,0X7F,0XDB,0XF5,0XFE,0XFF,0XFF,0XFF,0X95,0X15,0X55,0X05,0X01,0X40,0XA4,0XAA, - 0X6A,0X06,0X00,0X00,0X00,0X00,0X00,0X40,0X40,0X10,0X04,0X01,0X01,0X40,0X10,0X10, - 0X04,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X20,0X09,0X41,0XA4, - 0X59,0X05,0X00,0X40,0X40,0X10,0X04,0X01,0X00,0X00,0X40,0X54,0X05,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X00,0X00,0X00,0X00,0X00,0X94,0XEA,0XFA, - 0X2F,0X03,0X00,0X00,0XBF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFA,0XFA,0XE6,0XEA,0XF9,0XF7, - 0XFB,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFD,0XF0, - 0XC0,0X00,0X00,0X00,0X01,0X0A,0X7E,0XD0,0X00,0X00,0X00,0X01,0X03,0X0B,0X1E,0X3E, - 0XBA,0XEA,0XAA,0XAA,0XFA,0XEA,0XEA,0XEA,0XFB,0XFB,0XBF,0XBE,0XF9,0XF9,0XFD,0XFD, - 0XFD,0XBD,0XBD,0XBD,0XBC,0X3D,0XDA,0XF6,0XF5,0XE2,0X92,0X42,0X00,0XA0,0X1A,0X01, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X50,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0XAF,0XFF,0XFF,0XFF,0X69, - 0X01,0X95,0XFA,0XBF,0XAB,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XA9,0X95,0X55, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X80,0XE4,0XEB, - 0XF9,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XE4,0X6A,0X80,0X00,0X69,0X96,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X01,0X00,0X00,0X00,0X00,0X01,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X10,0X04,0X04,0X01,0X80,0XA0,0X59,0X46,0X51, - 0X10,0X04,0X05,0X01,0X00,0X00,0X00,0X00,0X90,0X14,0X05,0X00,0X40,0X40,0X40,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X94,0XAB,0X9B,0XEA, - 0XE9,0X5C,0X08,0X00,0X01,0XFF,0XFF,0XFF,0XFF,0XBF,0XBF,0XBF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFC,0XF0,0XC0,0X00,0X00,0X02,0X2D,0XA0,0X40,0X00,0X00,0X00,0X00,0X00, - 0X00,0X01,0X03,0X0F,0X2E,0X7B,0XFB,0X46,0X6A,0XAA,0XAA,0XAA,0XAA,0XEA,0XAA,0XAA, - 0XAA,0XAA,0XAA,0X56,0X10,0XFE,0XFF,0XFF,0XFF,0XFF,0XE5,0X69,0X0A,0X01,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X40,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X15,0XAA,0XFF,0XFF,0XEF,0XE5, - 0XF9,0XFF,0XAF,0XEA,0XAE,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XA9, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XF8,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XF5,0X42,0X59,0X64,0X92,0X5E, - 0X64,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X40,0X40,0X40,0X50,0X70,0X38,0X1D,0X0B,0X07,0X02,0X01,0X00,0X00, - 0X00,0X00,0X00,0X00,0X80,0X60,0X18,0X06,0X90,0XF8,0XFF,0XFF,0XA6,0X25,0X14,0X41, - 0X10,0X00,0X00,0X50,0X50,0X50,0X40,0X00,0X00,0X80,0XE0,0XA9,0XEA,0XBA,0X2F,0X17, - 0X15,0X14,0X08,0X24,0X50,0X46,0XFF,0XFF,0XFF,0XFE,0XFD,0XF8,0XC1,0X6F,0XFF,0XBF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XBF,0X3F,0X3F,0X2F,0X1F,0X0F,0X0F, - 0X0B,0X07,0X03,0X02,0X01,0X81,0X94,0X20,0X00,0X41,0X07,0X28,0XA0,0X40,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X02,0X14,0X46,0X6E,0XBA,0XEA,0XAB,0XBF,0XFF, - 0XFF,0XFE,0XEA,0XEA,0X80,0X5F,0XFF,0XFF,0XFF,0X2F,0X07,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X15,0X50,0XFA,0XFF,0XBF,0XEF,0XAB, - 0XFF,0XFF,0XAA,0XFE,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0XAA,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0XBF,0XBE,0XB4,0X95,0XAA,0X16, - 0X55,0XBD,0X90,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X01,0X01,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X80,0X90,0XA0, - 0X64,0X68,0X09,0X02,0X00,0X00,0X85,0X40,0XFF,0XFF,0XBF,0X2F,0X6F,0X0D,0X06,0X01, - 0X00,0X04,0X40,0X80,0XE5,0X95,0XA5,0XAE,0XAA,0XAB,0XAA,0X16,0X01,0X40,0X40,0X00, - 0X80,0X80,0X00,0X00,0X10,0X42,0X47,0X4F,0X4F,0X4F,0X0B,0X07,0X01,0XE9,0XEF,0XF5, - 0XBA,0XAF,0XBF,0XBF,0X9F,0XAF,0XBF,0XBE,0XAD,0XAE,0XAD,0XBD,0XBC,0XB8,0XB4,0XF0, - 0XF0,0XF0,0XF4,0XE8,0XE6,0XD2,0XD0,0XC0,0XC0,0XC0,0XC1,0XC0,0XC0,0XC2,0XC9,0XE4, - 0XD0,0XC0,0X89,0X84,0X80,0X80,0X80,0X40,0X40,0X40,0X01,0X05,0X06,0X1B,0XDF,0X3F, - 0X5F,0XE2,0X92,0X57,0X87,0X92,0XAB,0X1F,0X02,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0XD1,0X78,0X3F,0XF7,0XEA,0XAA,0XAA,0XAA, - 0XAF,0XFF,0XEA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X1F,0X7F,0XBF,0XBF, - 0XBF,0XBF,0X7F,0X7F,0X3F,0X2F,0X1F,0X0B,0X0A,0X02,0X02,0X00,0X00,0X56,0XFB,0X80, - 0X05,0X6A,0X96,0X9A,0XA5,0XA0,0X50,0X01,0X01,0X41,0X04,0X04,0X04,0X04,0X04,0X04, - 0X04,0X04,0X04,0X04,0X04,0X04,0X04,0X08,0X09,0X09,0X09,0X0A,0X07,0X17,0X1B,0X1A, - 0X1A,0X5A,0X69,0X24,0X65,0XA1,0X92,0XA0,0X74,0X6F,0XBF,0XF8,0XF1,0XF8,0XED,0XB5, - 0X7C,0X3E,0X2F,0X0F,0X07,0X81,0XA5,0XAA,0XAA,0XAA,0XAF,0X5A,0X56,0X15,0X00,0X40, - 0X9A,0X81,0X41,0X09,0X18,0X20,0X50,0X51,0XE0,0XF0,0XF4,0XFC,0XFF,0XDB,0XF1,0XA8, - 0XD5,0XE5,0XE9,0X6E,0X2F,0X6A,0X6A,0X6A,0X6A,0X6A,0X6A,0X6A,0X6A,0X6A,0X6A,0X6A, - 0X6A,0X7B,0X7F,0X7F,0X7F,0X7F,0X6F,0XAF,0XEF,0XEF,0XFF,0XEF,0X5F,0XCF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XCB,0XDB,0XEF,0XFF,0XFF,0XFF,0XCB,0XCF,0XEF,0X7F,0XAF,0X6A,0XFD, - 0XAB,0X65,0X69,0X56,0XBA,0X1A,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X15,0X45,0XE1,0X78,0X5A,0X56,0X55,0X55,0X55,0X57,0X6F,0XBA,0XAA, - 0X6A,0XFF,0XFF,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X90,0X6A,0XA6,0X02, - 0X09,0X20,0X80,0X41,0X02,0X06,0X06,0X19,0X28,0X34,0X70,0X91,0X41,0X44,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X01,0X00,0X00,0X00,0X01,0X02,0X09,0X18,0X24,0X96,0X91,0X41,0X01,0X01, - 0X09,0X0E,0X1E,0X2E,0X2B,0XAB,0XAA,0X6A,0X9A,0X96,0X95,0X95,0XE1,0XFE,0XAF,0XAE, - 0X4B,0X02,0X01,0X02,0X02,0X05,0X09,0X08,0X64,0X22,0X97,0X0F,0X1F,0X3F,0X7F,0XBF, - 0XFF,0XFF,0XFE,0X99,0X69,0XBD,0XF9,0XF9,0XF9,0XF9,0XF9,0XF9,0XF9,0XFA,0XFD,0XFD, - 0XFD,0XFE,0XFE,0XFE,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XAF, - 0X2F,0X3F,0X3F,0X3F,0X3F,0X3F,0X3F,0X3F,0X3F,0X3F,0XBF,0X7F,0X7D,0XFD,0XFC,0XB7, - 0X8F,0XAD,0XF4,0X29,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X55,0X55,0X55,0X55,0X55,0X55, - 0X55,0X95,0XA1,0X7C,0X7F,0XFF,0XFD,0XF9,0XF5,0XD5,0X15,0X55,0X55,0X55,0X56,0XAB, - 0XA9,0XFF,0XFF,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X80,0XB0,0X2C,0X06,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X94,0X16,0X95,0X5A,0X00, - 0X00,0X00,0X00,0X02,0X09,0X18,0X20,0X50,0X80,0X80,0X00,0X00,0X00,0X01,0X01,0X01, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X40,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X10,0X10,0X40,0X40,0X01,0X15,0X82,0X09, - 0X28,0X74,0XF0,0XA0,0XA0,0X90,0XD0,0XD0,0X51,0X11,0X51,0X51,0X15,0XBF,0XAA,0XA6, - 0XAB,0X15,0X00,0X00,0X00,0X00,0X00,0X00,0X05,0X00,0X6B,0XE9,0X00,0X00,0X00,0X00, - 0X00,0X01,0X03,0X07,0X0E,0X2E,0X2F,0X2F,0X2F,0X3F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFC,0XF0,0XC0,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X69,0X95, - 0XFE,0X6F,0X02,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X55,0X55,0X55,0X55,0X55,0X95,0XA5,0X69, - 0X5A,0X56,0X55,0X55,0X55,0X55,0X56,0X5B,0X6F,0XFF,0XFE,0XF4,0X95,0X55,0X55,0X56, - 0XFE,0XFF,0XAF,0XFF,0XEA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X80,0XB4,0X0A, - 0XA6,0X05,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XA8,0X0A,0X50,0X16,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X02,0X06,0X09,0X08,0X18,0X24, - 0X20,0X70,0XE0,0XC0,0X80,0X40,0X40,0X40,0X40,0X00,0X00,0X40,0X40,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X10,0XA0,0X64,0X41,0X45, - 0X00,0X00,0X00,0X03,0X0B,0X0A,0X12,0X50,0X50,0X54,0X55,0X40,0X55,0X7F,0XEA,0X2A, - 0X68,0XF4,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X05,0XFF,0X50,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0XC0,0XFC,0XFC,0XFC,0XF4,0XF0,0XF0,0XF5,0XFE,0XFF,0XFF,0XFF, - 0X2F,0X7F,0XBF,0XFF,0XFF,0XFF,0XBF,0XBF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFC,0XF4,0XD0,0X40,0X00,0X00,0X00,0X14,0X15,0X90,0XBF, - 0X06,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X50,0X54,0X55,0X55,0X55,0X95,0X65,0X69,0X5A,0X56,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X56,0X6F,0XFF,0XFF,0XA4,0X05,0XA5, - 0XFF,0XAF,0XFF,0XFF,0XFE,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X54,0X6A,0X00,0X00, - 0X56,0X50,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X90,0X18,0X06,0X51,0X65,0X05,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X01,0X02,0X09,0X21,0X97,0X56,0X02,0X05,0X04,0X10,0X55,0X9D,0XA9, - 0X55,0X48,0X18,0X18,0X18,0X28,0X28,0X30,0X20,0X50,0X84,0X04,0X04,0X04,0X02,0X06, - 0X19,0X25,0XA5,0X94,0X84,0X54,0X54,0XC4,0XB4,0X2C,0X09,0X02,0X00,0X00,0X6F,0XF9, - 0XAE,0XDB,0XC1,0X00,0X00,0X00,0X40,0XC0,0X90,0XF4,0XFC,0XFF,0XFE,0XFC,0XF4,0XF0, - 0XD0,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XEF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFE,0XFD,0XFF,0XFF,0XFF,0XFE,0XFF,0XEF,0XAB,0XBF,0XEF,0XEF,0XEF,0XFF,0XBF,0X7F, - 0X7F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFC,0XF0,0X40,0X01,0XAD,0X15,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X40,0X54,0X55,0X95,0XA5,0X69,0X59,0X56,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0XAB,0XFF,0XFF,0X90,0XFE, - 0XFF,0XFF,0XFF,0XFF,0XAB,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X15,0XE9,0X40,0X00, - 0X00,0X06,0X68,0XD0,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X80,0X90,0X24,0X09,0X02,0X00,0X40,0XA4,0X1A,0X01,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X0F,0X00,0X00,0X00,0X00,0X00,0X00,0X02, - 0X06,0X06,0X09,0X19,0X28,0X34,0X30,0X24,0X28,0X29,0X36,0X29,0X0E,0X07,0X05,0X09, - 0X08,0X18,0X18,0X14,0X05,0X0A,0X07,0X02,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X07, - 0X0F,0X1A,0X4B,0X8A,0XFD,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XF7,0XD1,0XC6,0X96,0X57,0X57,0X4B,0X1F,0XBF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XBF,0X43,0X43,0X83,0X43,0X40,0X54, - 0XFA,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X2E,0X01,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X80,0XD4, - 0XB5,0X79,0X5E,0X57,0X56,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X05,0XEA,0XFF,0X7F,0X56,0X56, - 0X5B,0XAF,0XFF,0XEB,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X0B,0X3C, - 0XA4,0X50,0X50,0X91,0X87,0XAC,0XB0,0XD0,0XC0,0X80,0X80,0X80,0X90,0X60,0X20,0X18, - 0X09,0X02,0X01,0X00,0X00,0X80,0X60,0X1C,0X06,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X50,0X14,0X05,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01, - 0X14,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X3F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFD,0X60,0X01,0X01,0X15,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XF5,0XE5,0X15,0X21,0X66,0X66,0X9A,0X6F, - 0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X0B,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40,0XD0,0XB4,0X6D,0X5F,0X57,0X56, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0XA5,0X6F,0X56,0X55,0X55,0X55, - 0X55,0X55,0X56,0X5B,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X01,0X02,0X08,0X18,0X20,0X61,0XA1,0X91,0X82,0X82,0X81,0X80,0X80,0X80,0X80,0X90, - 0X60,0X20,0X18,0X09,0X02,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X55,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X02,0X07,0X0F,0X1F,0X2F,0X2F,0X3F,0X3F,0X3F,0X3F,0X3F, - 0X3F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFB,0XFC,0XFC,0XFD,0XFF,0XFF,0XFF,0XFF, - 0XFF,0XFF,0XFF,0X6B,0X2F,0X7F,0XAF,0X6F,0X6F,0X2F,0X3E,0X7C,0XB8,0XB8,0X10,0X41, - 0X41,0X5F,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0X6F,0X01,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0XD0,0XB4,0X6D,0X57,0X55,0X54,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X55,0X95,0XE5,0X79,0X5B,0X56,0X55,0X55,0X55,0X55,0X55, - 0X55,0X55,0X55,0X55,0X55,0X56,0X5A,0X6A,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X01,0X01,0X01,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X10,0X04,0X04,0X01,0X05,0X14,0X40,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X40, - 0X10,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X2F,0X3F,0X3F,0X3F,0X2F,0X1F,0XFF,0XFF,0XFF,0X7F,0X0F,0X3F,0XFF,0XFF,0X2F, - 0X0F,0X2F,0X3F,0XBB,0X81,0X44,0X00,0X15,0XA6,0X16,0X19,0X19,0X19,0X1D,0X2D,0X2E, - 0X3E,0X3F,0X7F,0X3F,0X2F,0X1F,0X0F,0X4B,0X56,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0XD0,0X38,0X0F,0X03,0X00,0X01,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X01,0X01,0X01,0X06,0X0A,0X0A,0X19,0X29,0X29,0X39,0X79, - 0X75,0X75,0X79,0X79,0X79,0X6E,0XA7,0XA5,0XA5,0XA5,0XA5,0XA5,0XA5,0X95,0X95,0X95, - 0X95,0X95,0X95,0X55,0X55,0X55,0X55,0X55,0X55,0X5A,0X6A,0XAA,0XAA,0XAA,0XAA,0XAA, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X05,0X04,0X00,0X00,0X00,0X00,0X04,0X01,0X01, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X03,0X01,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X01,0X01,0X0A,0X02,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X50,0X15,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X40,0X64,0X06,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X01,0X01,0X01, - 0X02,0X02,0X02,0X02,0X06,0X06,0X0A,0X0A,0X0A,0X09,0X19,0X29,0X29,0X2A,0X7A,0XB6, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X40,0X04,0X00,0X14,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X54,0XAA,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X15,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, - 0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00,0X00, -}; + /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ @@ -565,6 +59,8 @@ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_SPI1_Init(void); +static void MX_SPI2_Init(void); +static void MX_TIM4_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ @@ -605,26 +101,16 @@ int main(void) MX_GPIO_Init(); MX_DMA_Init(); MX_SPI1_Init(); + MX_SPI2_Init(); + MX_TIM4_Init(); /* USER CODE BEGIN 2 */ - bsp_lcd_init_regs(); - bsp_lcd_clear(); - -#if BSP_LCD_4GRAY_ENABLE - bsp_lcd_show_bitmap(0, BSP_LCD_PAGE_COUNT - 1, 0, BSP_LCD_COLUMN_COUNT - 1, image_4gray_256x128); -#else - bsp_lcd_show_8_16_string(1, (BSP_LCD_COLUMN_COUNT - (sizeof("LCD Display Test") - 1) * 8) / 2, "LCD Display Test"); - bsp_lcd_show_8_16_string(5, (BSP_LCD_COLUMN_COUNT - (sizeof("Controller: ST75256") - 1) * 8) / 2, "Controller: ST75256"); - bsp_lcd_show_8_16_string(7, (BSP_LCD_COLUMN_COUNT - (sizeof("Resolution: 256x128") - 1) * 8) / 2, "Resolution: 256x128"); - bsp_lcd_show_6_8_string(12, (BSP_LCD_COLUMN_COUNT - (sizeof("By Principle") - 1) * 6) / 2, "By Principle"); - bsp_lcd_show_6_8_string(13, (BSP_LCD_COLUMN_COUNT - (sizeof("2025.1") - 1) * 6) / 2, "2025.1"); -#endif + app_main(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { - __WFI(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ @@ -709,6 +195,89 @@ static void MX_SPI1_Init(void) } +/** + * @brief SPI2 Initialization Function + * @param None + * @retval None + */ +static void MX_SPI2_Init(void) +{ + + /* USER CODE BEGIN SPI2_Init 0 */ + + /* USER CODE END SPI2_Init 0 */ + + /* USER CODE BEGIN SPI2_Init 1 */ + + /* USER CODE END SPI2_Init 1 */ + /* SPI2 parameter configuration*/ + hspi2.Instance = SPI2; + hspi2.Init.Mode = SPI_MODE_MASTER; + hspi2.Init.Direction = SPI_DIRECTION_2LINES; + hspi2.Init.DataSize = SPI_DATASIZE_8BIT; + hspi2.Init.CLKPolarity = SPI_POLARITY_HIGH; + hspi2.Init.CLKPhase = SPI_PHASE_2EDGE; + hspi2.Init.NSS = SPI_NSS_SOFT; + hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; + hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; + hspi2.Init.TIMode = SPI_TIMODE_DISABLE; + hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; + hspi2.Init.CRCPolynomial = 10; + if (HAL_SPI_Init(&hspi2) != HAL_OK) + { + Error_Handler(); + } + /* USER CODE BEGIN SPI2_Init 2 */ + + /* USER CODE END SPI2_Init 2 */ + +} + +/** + * @brief TIM4 Initialization Function + * @param None + * @retval None + */ +static void MX_TIM4_Init(void) +{ + + /* USER CODE BEGIN TIM4_Init 0 */ + + /* USER CODE END TIM4_Init 0 */ + + TIM_ClockConfigTypeDef sClockSourceConfig = {0}; + TIM_MasterConfigTypeDef sMasterConfig = {0}; + + /* USER CODE BEGIN TIM4_Init 1 */ + + /* USER CODE END TIM4_Init 1 */ + htim4.Instance = TIM4; + htim4.Init.Prescaler = SystemCoreClock / 1000000 - 1; + htim4.Init.CounterMode = TIM_COUNTERMODE_UP; + htim4.Init.Period = 1000000 / 30; + htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; + htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; + if (HAL_TIM_Base_Init(&htim4) != HAL_OK) + { + Error_Handler(); + } + sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; + if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) + { + Error_Handler(); + } + sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; + sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; + if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) + { + Error_Handler(); + } + /* USER CODE BEGIN TIM4_Init 2 */ + + /* USER CODE END TIM4_Init 2 */ + +} + /** * Enable DMA controller clock */ @@ -722,6 +291,12 @@ static void MX_DMA_Init(void) /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 8, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); + /* DMA1_Channel4_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 0, 0); + HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn); + /* DMA1_Channel5_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0); + HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); } @@ -737,12 +312,27 @@ static void MX_GPIO_Init(void) /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ + __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); + __HAL_RCC_GPIOB_CLK_ENABLE(); + + /*Configure GPIO pin Output Level */ + HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, LCD_CS_Pin|LCD_RS_Pin, GPIO_PIN_SET); + /*Configure GPIO pin Output Level */ + HAL_GPIO_WritePin(SD_CS_GPIO_Port, SD_CS_Pin, GPIO_PIN_SET); + + /*Configure GPIO pin : LED_Pin */ + GPIO_InitStruct.Pin = LED_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct); + /*Configure GPIO pins : LCD_CS_Pin LCD_RS_Pin */ GPIO_InitStruct.Pin = LCD_CS_Pin|LCD_RS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; @@ -750,12 +340,33 @@ static void MX_GPIO_Init(void) GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); + /*Configure GPIO pin : SD_CS_Pin */ + GPIO_InitStruct.Pin = SD_CS_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; + HAL_GPIO_Init(SD_CS_GPIO_Port, &GPIO_InitStruct); + /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ +void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) +{ + if (hspi == &BSP_LCD_SPI) { + bsp_lcd_dma_done_callback(); + } else if (hspi == &BSP_SD_SPI) { + bsp_sd_dma_tx_done_callback(); + } +} +void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) +{ + if (hspi == &BSP_SD_SPI) { + bsp_sd_dma_rx_done_callback(); + } +} /* USER CODE END 4 */ /** diff --git a/stm32f103_lcds_st75256/Core/Src/stm32f1xx_hal_msp.c b/stm32f103_lcds_st75256/Core/Src/stm32f1xx_hal_msp.c index a63d9b4..a5cb283 100644 --- a/stm32f103_lcds_st75256/Core/Src/stm32f1xx_hal_msp.c +++ b/stm32f103_lcds_st75256/Core/Src/stm32f1xx_hal_msp.c @@ -25,6 +25,10 @@ /* USER CODE END Includes */ extern DMA_HandleTypeDef hdma_spi1_tx; +extern DMA_HandleTypeDef hdma_spi2_rx; + +extern DMA_HandleTypeDef hdma_spi2_tx; + /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN TD */ @@ -132,7 +136,70 @@ void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi) /* USER CODE BEGIN SPI1_MspInit 1 */ /* USER CODE END SPI1_MspInit 1 */ + } + else if(hspi->Instance==SPI2) + { + /* USER CODE BEGIN SPI2_MspInit 0 */ + /* USER CODE END SPI2_MspInit 0 */ + /* Peripheral clock enable */ + __HAL_RCC_SPI2_CLK_ENABLE(); + + __HAL_RCC_GPIOB_CLK_ENABLE(); + /**SPI2 GPIO Configuration + PB13 ------> SPI2_SCK + PB14 ------> SPI2_MISO + PB15 ------> SPI2_MOSI + */ + GPIO_InitStruct.Pin = SD_SCK_Pin|SD_MOSI_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; + HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = SD_MISO_Pin; + GPIO_InitStruct.Mode = GPIO_MODE_INPUT; + GPIO_InitStruct.Pull = GPIO_NOPULL; + HAL_GPIO_Init(SD_MISO_GPIO_Port, &GPIO_InitStruct); + + /* SPI2 DMA Init */ + /* SPI2_RX Init */ + hdma_spi2_rx.Instance = DMA1_Channel4; + hdma_spi2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; + hdma_spi2_rx.Init.PeriphInc = DMA_PINC_DISABLE; + hdma_spi2_rx.Init.MemInc = DMA_MINC_ENABLE; + hdma_spi2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; + hdma_spi2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; + hdma_spi2_rx.Init.Mode = DMA_NORMAL; + hdma_spi2_rx.Init.Priority = DMA_PRIORITY_LOW; + if (HAL_DMA_Init(&hdma_spi2_rx) != HAL_OK) + { + Error_Handler(); + } + + __HAL_LINKDMA(hspi,hdmarx,hdma_spi2_rx); + + /* SPI2_TX Init */ + hdma_spi2_tx.Instance = DMA1_Channel5; + hdma_spi2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; + hdma_spi2_tx.Init.PeriphInc = DMA_PINC_DISABLE; + hdma_spi2_tx.Init.MemInc = DMA_MINC_ENABLE; + hdma_spi2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; + hdma_spi2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; + hdma_spi2_tx.Init.Mode = DMA_NORMAL; + hdma_spi2_tx.Init.Priority = DMA_PRIORITY_LOW; + if (HAL_DMA_Init(&hdma_spi2_tx) != HAL_OK) + { + Error_Handler(); + } + + __HAL_LINKDMA(hspi,hdmatx,hdma_spi2_tx); + + /* SPI2 interrupt Init */ + HAL_NVIC_SetPriority(SPI2_IRQn, 0, 0); + HAL_NVIC_EnableIRQ(SPI2_IRQn); + /* USER CODE BEGIN SPI2_MspInit 1 */ + + /* USER CODE END SPI2_MspInit 1 */ } } @@ -168,6 +235,82 @@ void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi) /* USER CODE END SPI1_MspDeInit 1 */ } + else if(hspi->Instance==SPI2) + { + /* USER CODE BEGIN SPI2_MspDeInit 0 */ + + /* USER CODE END SPI2_MspDeInit 0 */ + /* Peripheral clock disable */ + __HAL_RCC_SPI2_CLK_DISABLE(); + + /**SPI2 GPIO Configuration + PB13 ------> SPI2_SCK + PB14 ------> SPI2_MISO + PB15 ------> SPI2_MOSI + */ + HAL_GPIO_DeInit(GPIOB, SD_SCK_Pin|SD_MISO_Pin|SD_MOSI_Pin); + + /* SPI2 DMA DeInit */ + HAL_DMA_DeInit(hspi->hdmarx); + HAL_DMA_DeInit(hspi->hdmatx); + + /* SPI2 interrupt DeInit */ + HAL_NVIC_DisableIRQ(SPI2_IRQn); + /* USER CODE BEGIN SPI2_MspDeInit 1 */ + + /* USER CODE END SPI2_MspDeInit 1 */ + } + +} + +/** +* @brief TIM_Base MSP Initialization +* This function configures the hardware resources used in this example +* @param htim_base: TIM_Base handle pointer +* @retval None +*/ +void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base) +{ + if(htim_base->Instance==TIM4) + { + /* USER CODE BEGIN TIM4_MspInit 0 */ + + /* USER CODE END TIM4_MspInit 0 */ + /* Peripheral clock enable */ + __HAL_RCC_TIM4_CLK_ENABLE(); + /* TIM4 interrupt Init */ + HAL_NVIC_SetPriority(TIM4_IRQn, 0, 0); + HAL_NVIC_EnableIRQ(TIM4_IRQn); + /* USER CODE BEGIN TIM4_MspInit 1 */ + + /* USER CODE END TIM4_MspInit 1 */ + + } + +} + +/** +* @brief TIM_Base MSP De-Initialization +* This function freeze the hardware resources used in this example +* @param htim_base: TIM_Base handle pointer +* @retval None +*/ +void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base) +{ + if(htim_base->Instance==TIM4) + { + /* USER CODE BEGIN TIM4_MspDeInit 0 */ + + /* USER CODE END TIM4_MspDeInit 0 */ + /* Peripheral clock disable */ + __HAL_RCC_TIM4_CLK_DISABLE(); + + /* TIM4 interrupt DeInit */ + HAL_NVIC_DisableIRQ(TIM4_IRQn); + /* USER CODE BEGIN TIM4_MspDeInit 1 */ + + /* USER CODE END TIM4_MspDeInit 1 */ + } } diff --git a/stm32f103_lcds_st75256/Core/Src/stm32f1xx_it.c b/stm32f103_lcds_st75256/Core/Src/stm32f1xx_it.c index 5acd5f1..391a8a9 100644 --- a/stm32f103_lcds_st75256/Core/Src/stm32f1xx_it.c +++ b/stm32f103_lcds_st75256/Core/Src/stm32f1xx_it.c @@ -56,7 +56,11 @@ /* External variables --------------------------------------------------------*/ extern DMA_HandleTypeDef hdma_spi1_tx; +extern DMA_HandleTypeDef hdma_spi2_rx; +extern DMA_HandleTypeDef hdma_spi2_tx; extern SPI_HandleTypeDef hspi1; +extern SPI_HandleTypeDef hspi2; +extern TIM_HandleTypeDef htim4; /* USER CODE BEGIN EV */ /* USER CODE END EV */ @@ -213,6 +217,48 @@ void DMA1_Channel3_IRQHandler(void) /* USER CODE END DMA1_Channel3_IRQn 1 */ } +/** + * @brief This function handles DMA1 channel4 global interrupt. + */ +void DMA1_Channel4_IRQHandler(void) +{ + /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */ + + /* USER CODE END DMA1_Channel4_IRQn 0 */ + HAL_DMA_IRQHandler(&hdma_spi2_rx); + /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */ + + /* USER CODE END DMA1_Channel4_IRQn 1 */ +} + +/** + * @brief This function handles DMA1 channel5 global interrupt. + */ +void DMA1_Channel5_IRQHandler(void) +{ + /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */ + + /* USER CODE END DMA1_Channel5_IRQn 0 */ + HAL_DMA_IRQHandler(&hdma_spi2_tx); + /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */ + + /* USER CODE END DMA1_Channel5_IRQn 1 */ +} + +/** + * @brief This function handles TIM4 global interrupt. + */ +void TIM4_IRQHandler(void) +{ + /* USER CODE BEGIN TIM4_IRQn 0 */ + + /* USER CODE END TIM4_IRQn 0 */ + HAL_TIM_IRQHandler(&htim4); + /* USER CODE BEGIN TIM4_IRQn 1 */ + + /* USER CODE END TIM4_IRQn 1 */ +} + /** * @brief This function handles SPI1 global interrupt. */ @@ -227,6 +273,20 @@ void SPI1_IRQHandler(void) /* USER CODE END SPI1_IRQn 1 */ } +/** + * @brief This function handles SPI2 global interrupt. + */ +void SPI2_IRQHandler(void) +{ + /* USER CODE BEGIN SPI2_IRQn 0 */ + + /* USER CODE END SPI2_IRQn 0 */ + HAL_SPI_IRQHandler(&hspi2); + /* USER CODE BEGIN SPI2_IRQn 1 */ + + /* USER CODE END SPI2_IRQn 1 */ +} + /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ diff --git a/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h new file mode 100644 index 0000000..ac72075 --- /dev/null +++ b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h @@ -0,0 +1,2153 @@ +/** + ****************************************************************************** + * @file stm32f1xx_hal_tim.h + * @author MCD Application Team + * @brief Header file of TIM HAL module. + ****************************************************************************** + * @attention + * + * Copyright (c) 2016 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32F1xx_HAL_TIM_H +#define STM32F1xx_HAL_TIM_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f1xx_hal_def.h" + +/** @addtogroup STM32F1xx_HAL_Driver + * @{ + */ + +/** @addtogroup TIM + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup TIM_Exported_Types TIM Exported Types + * @{ + */ + +/** + * @brief TIM Time base Configuration Structure definition + */ +typedef struct +{ + uint32_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock. + This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */ + + uint32_t CounterMode; /*!< Specifies the counter mode. + This parameter can be a value of @ref TIM_Counter_Mode */ + + uint32_t Period; /*!< Specifies the period value to be loaded into the active + Auto-Reload Register at the next update event. + This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. */ + + uint32_t ClockDivision; /*!< Specifies the clock division. + This parameter can be a value of @ref TIM_ClockDivision */ + + uint32_t RepetitionCounter; /*!< Specifies the repetition counter value. Each time the RCR downcounter + reaches zero, an update event is generated and counting restarts + from the RCR value (N). + This means in PWM mode that (N+1) corresponds to: + - the number of PWM periods in edge-aligned mode + - the number of half PWM period in center-aligned mode + GP timers: this parameter must be a number between Min_Data = 0x00 and + Max_Data = 0xFF. + Advanced timers: this parameter must be a number between Min_Data = 0x0000 and + Max_Data = 0xFFFF. */ + + uint32_t AutoReloadPreload; /*!< Specifies the auto-reload preload. + This parameter can be a value of @ref TIM_AutoReloadPreload */ +} TIM_Base_InitTypeDef; + +/** + * @brief TIM Output Compare Configuration Structure definition + */ +typedef struct +{ + uint32_t OCMode; /*!< Specifies the TIM mode. + This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */ + + uint32_t Pulse; /*!< Specifies the pulse value to be loaded into the Capture Compare Register. + This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */ + + uint32_t OCPolarity; /*!< Specifies the output polarity. + This parameter can be a value of @ref TIM_Output_Compare_Polarity */ + + uint32_t OCNPolarity; /*!< Specifies the complementary output polarity. + This parameter can be a value of @ref TIM_Output_Compare_N_Polarity + @note This parameter is valid only for timer instances supporting break feature. */ + + uint32_t OCFastMode; /*!< Specifies the Fast mode state. + This parameter can be a value of @ref TIM_Output_Fast_State + @note This parameter is valid only in PWM1 and PWM2 mode. */ + + + uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. + This parameter can be a value of @ref TIM_Output_Compare_Idle_State + @note This parameter is valid only for timer instances supporting break feature. */ + + uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. + This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State + @note This parameter is valid only for timer instances supporting break feature. */ +} TIM_OC_InitTypeDef; + +/** + * @brief TIM One Pulse Mode Configuration Structure definition + */ +typedef struct +{ + uint32_t OCMode; /*!< Specifies the TIM mode. + This parameter can be a value of @ref TIM_Output_Compare_and_PWM_modes */ + + uint32_t Pulse; /*!< Specifies the pulse value to be loaded into the Capture Compare Register. + This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */ + + uint32_t OCPolarity; /*!< Specifies the output polarity. + This parameter can be a value of @ref TIM_Output_Compare_Polarity */ + + uint32_t OCNPolarity; /*!< Specifies the complementary output polarity. + This parameter can be a value of @ref TIM_Output_Compare_N_Polarity + @note This parameter is valid only for timer instances supporting break feature. */ + + uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. + This parameter can be a value of @ref TIM_Output_Compare_Idle_State + @note This parameter is valid only for timer instances supporting break feature. */ + + uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. + This parameter can be a value of @ref TIM_Output_Compare_N_Idle_State + @note This parameter is valid only for timer instances supporting break feature. */ + + uint32_t ICPolarity; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_Input_Capture_Polarity */ + + uint32_t ICSelection; /*!< Specifies the input. + This parameter can be a value of @ref TIM_Input_Capture_Selection */ + + uint32_t ICFilter; /*!< Specifies the input capture filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ +} TIM_OnePulse_InitTypeDef; + +/** + * @brief TIM Input Capture Configuration Structure definition + */ +typedef struct +{ + uint32_t ICPolarity; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_Input_Capture_Polarity */ + + uint32_t ICSelection; /*!< Specifies the input. + This parameter can be a value of @ref TIM_Input_Capture_Selection */ + + uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler. + This parameter can be a value of @ref TIM_Input_Capture_Prescaler */ + + uint32_t ICFilter; /*!< Specifies the input capture filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ +} TIM_IC_InitTypeDef; + +/** + * @brief TIM Encoder Configuration Structure definition + */ +typedef struct +{ + uint32_t EncoderMode; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_Encoder_Mode */ + + uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_Encoder_Input_Polarity */ + + uint32_t IC1Selection; /*!< Specifies the input. + This parameter can be a value of @ref TIM_Input_Capture_Selection */ + + uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler. + This parameter can be a value of @ref TIM_Input_Capture_Prescaler */ + + uint32_t IC1Filter; /*!< Specifies the input capture filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + + uint32_t IC2Polarity; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_Encoder_Input_Polarity */ + + uint32_t IC2Selection; /*!< Specifies the input. + This parameter can be a value of @ref TIM_Input_Capture_Selection */ + + uint32_t IC2Prescaler; /*!< Specifies the Input Capture Prescaler. + This parameter can be a value of @ref TIM_Input_Capture_Prescaler */ + + uint32_t IC2Filter; /*!< Specifies the input capture filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ +} TIM_Encoder_InitTypeDef; + +/** + * @brief Clock Configuration Handle Structure definition + */ +typedef struct +{ + uint32_t ClockSource; /*!< TIM clock sources + This parameter can be a value of @ref TIM_Clock_Source */ + uint32_t ClockPolarity; /*!< TIM clock polarity + This parameter can be a value of @ref TIM_Clock_Polarity */ + uint32_t ClockPrescaler; /*!< TIM clock prescaler + This parameter can be a value of @ref TIM_Clock_Prescaler */ + uint32_t ClockFilter; /*!< TIM clock filter + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ +} TIM_ClockConfigTypeDef; + +/** + * @brief TIM Clear Input Configuration Handle Structure definition + */ +typedef struct +{ + uint32_t ClearInputState; /*!< TIM clear Input state + This parameter can be ENABLE or DISABLE */ + uint32_t ClearInputSource; /*!< TIM clear Input sources + This parameter can be a value of @ref TIM_ClearInput_Source */ + uint32_t ClearInputPolarity; /*!< TIM Clear Input polarity + This parameter can be a value of @ref TIM_ClearInput_Polarity */ + uint32_t ClearInputPrescaler; /*!< TIM Clear Input prescaler + This parameter must be 0: When OCRef clear feature is used with ETR source, + ETR prescaler must be off */ + uint32_t ClearInputFilter; /*!< TIM Clear Input filter + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ +} TIM_ClearInputConfigTypeDef; + +/** + * @brief TIM Master configuration Structure definition + */ +typedef struct +{ + uint32_t MasterOutputTrigger; /*!< Trigger output (TRGO) selection + This parameter can be a value of @ref TIM_Master_Mode_Selection */ + uint32_t MasterSlaveMode; /*!< Master/slave mode selection + This parameter can be a value of @ref TIM_Master_Slave_Mode + @note When the Master/slave mode is enabled, the effect of + an event on the trigger input (TRGI) is delayed to allow a + perfect synchronization between the current timer and its + slaves (through TRGO). It is not mandatory in case of timer + synchronization mode. */ +} TIM_MasterConfigTypeDef; + +/** + * @brief TIM Slave configuration Structure definition + */ +typedef struct +{ + uint32_t SlaveMode; /*!< Slave mode selection + This parameter can be a value of @ref TIM_Slave_Mode */ + uint32_t InputTrigger; /*!< Input Trigger source + This parameter can be a value of @ref TIM_Trigger_Selection */ + uint32_t TriggerPolarity; /*!< Input Trigger polarity + This parameter can be a value of @ref TIM_Trigger_Polarity */ + uint32_t TriggerPrescaler; /*!< Input trigger prescaler + This parameter can be a value of @ref TIM_Trigger_Prescaler */ + uint32_t TriggerFilter; /*!< Input trigger filter + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + +} TIM_SlaveConfigTypeDef; + +/** + * @brief TIM Break input(s) and Dead time configuration Structure definition + * @note 2 break inputs can be configured (BKIN and BKIN2) with configurable + * filter and polarity. + */ +typedef struct +{ + uint32_t OffStateRunMode; /*!< TIM off state in run mode, This parameter can be a value of @ref TIM_OSSR_Off_State_Selection_for_Run_mode_state */ + + uint32_t OffStateIDLEMode; /*!< TIM off state in IDLE mode, This parameter can be a value of @ref TIM_OSSI_Off_State_Selection_for_Idle_mode_state */ + + uint32_t LockLevel; /*!< TIM Lock level, This parameter can be a value of @ref TIM_Lock_level */ + + uint32_t DeadTime; /*!< TIM dead Time, This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF */ + + uint32_t BreakState; /*!< TIM Break State, This parameter can be a value of @ref TIM_Break_Input_enable_disable */ + + uint32_t BreakPolarity; /*!< TIM Break input polarity, This parameter can be a value of @ref TIM_Break_Polarity */ + + uint32_t BreakFilter; /*!< Specifies the break input filter.This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + + uint32_t AutomaticOutput; /*!< TIM Automatic Output Enable state, This parameter can be a value of @ref TIM_AOE_Bit_Set_Reset */ + +} TIM_BreakDeadTimeConfigTypeDef; + +/** + * @brief HAL State structures definition + */ +typedef enum +{ + HAL_TIM_STATE_RESET = 0x00U, /*!< Peripheral not yet initialized or disabled */ + HAL_TIM_STATE_READY = 0x01U, /*!< Peripheral Initialized and ready for use */ + HAL_TIM_STATE_BUSY = 0x02U, /*!< An internal process is ongoing */ + HAL_TIM_STATE_TIMEOUT = 0x03U, /*!< Timeout state */ + HAL_TIM_STATE_ERROR = 0x04U /*!< Reception process is ongoing */ +} HAL_TIM_StateTypeDef; + +/** + * @brief TIM Channel States definition + */ +typedef enum +{ + HAL_TIM_CHANNEL_STATE_RESET = 0x00U, /*!< TIM Channel initial state */ + HAL_TIM_CHANNEL_STATE_READY = 0x01U, /*!< TIM Channel ready for use */ + HAL_TIM_CHANNEL_STATE_BUSY = 0x02U, /*!< An internal process is ongoing on the TIM channel */ +} HAL_TIM_ChannelStateTypeDef; + +/** + * @brief DMA Burst States definition + */ +typedef enum +{ + HAL_DMA_BURST_STATE_RESET = 0x00U, /*!< DMA Burst initial state */ + HAL_DMA_BURST_STATE_READY = 0x01U, /*!< DMA Burst ready for use */ + HAL_DMA_BURST_STATE_BUSY = 0x02U, /*!< Ongoing DMA Burst */ +} HAL_TIM_DMABurstStateTypeDef; + +/** + * @brief HAL Active channel structures definition + */ +typedef enum +{ + HAL_TIM_ACTIVE_CHANNEL_1 = 0x01U, /*!< The active channel is 1 */ + HAL_TIM_ACTIVE_CHANNEL_2 = 0x02U, /*!< The active channel is 2 */ + HAL_TIM_ACTIVE_CHANNEL_3 = 0x04U, /*!< The active channel is 3 */ + HAL_TIM_ACTIVE_CHANNEL_4 = 0x08U, /*!< The active channel is 4 */ + HAL_TIM_ACTIVE_CHANNEL_CLEARED = 0x00U /*!< All active channels cleared */ +} HAL_TIM_ActiveChannel; + +/** + * @brief TIM Time Base Handle Structure definition + */ +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +typedef struct __TIM_HandleTypeDef +#else +typedef struct +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +{ + TIM_TypeDef *Instance; /*!< Register base address */ + TIM_Base_InitTypeDef Init; /*!< TIM Time Base required parameters */ + HAL_TIM_ActiveChannel Channel; /*!< Active channel */ + DMA_HandleTypeDef *hdma[7]; /*!< DMA Handlers array + This array is accessed by a @ref DMA_Handle_index */ + HAL_LockTypeDef Lock; /*!< Locking object */ + __IO HAL_TIM_StateTypeDef State; /*!< TIM operation state */ + __IO HAL_TIM_ChannelStateTypeDef ChannelState[4]; /*!< TIM channel operation state */ + __IO HAL_TIM_ChannelStateTypeDef ChannelNState[4]; /*!< TIM complementary channel operation state */ + __IO HAL_TIM_DMABurstStateTypeDef DMABurstState; /*!< DMA burst operation state */ + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + void (* Base_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp Init Callback */ + void (* Base_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Base Msp DeInit Callback */ + void (* IC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp Init Callback */ + void (* IC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM IC Msp DeInit Callback */ + void (* OC_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp Init Callback */ + void (* OC_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM OC Msp DeInit Callback */ + void (* PWM_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp Init Callback */ + void (* PWM_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Msp DeInit Callback */ + void (* OnePulse_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp Init Callback */ + void (* OnePulse_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM One Pulse Msp DeInit Callback */ + void (* Encoder_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp Init Callback */ + void (* Encoder_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Encoder Msp DeInit Callback */ + void (* HallSensor_MspInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp Init Callback */ + void (* HallSensor_MspDeInitCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Hall Sensor Msp DeInit Callback */ + void (* PeriodElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed Callback */ + void (* PeriodElapsedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Period Elapsed half complete Callback */ + void (* TriggerCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger Callback */ + void (* TriggerHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Trigger half complete Callback */ + void (* IC_CaptureCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture Callback */ + void (* IC_CaptureHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Input Capture half complete Callback */ + void (* OC_DelayElapsedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Output Compare Delay Elapsed Callback */ + void (* PWM_PulseFinishedCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished Callback */ + void (* PWM_PulseFinishedHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM PWM Pulse Finished half complete Callback */ + void (* ErrorCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Error Callback */ + void (* CommutationCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation Callback */ + void (* CommutationHalfCpltCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Commutation half complete Callback */ + void (* BreakCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Break Callback */ +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} TIM_HandleTypeDef; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief HAL TIM Callback ID enumeration definition + */ +typedef enum +{ + HAL_TIM_BASE_MSPINIT_CB_ID = 0x00U /*!< TIM Base MspInit Callback ID */ + , HAL_TIM_BASE_MSPDEINIT_CB_ID = 0x01U /*!< TIM Base MspDeInit Callback ID */ + , HAL_TIM_IC_MSPINIT_CB_ID = 0x02U /*!< TIM IC MspInit Callback ID */ + , HAL_TIM_IC_MSPDEINIT_CB_ID = 0x03U /*!< TIM IC MspDeInit Callback ID */ + , HAL_TIM_OC_MSPINIT_CB_ID = 0x04U /*!< TIM OC MspInit Callback ID */ + , HAL_TIM_OC_MSPDEINIT_CB_ID = 0x05U /*!< TIM OC MspDeInit Callback ID */ + , HAL_TIM_PWM_MSPINIT_CB_ID = 0x06U /*!< TIM PWM MspInit Callback ID */ + , HAL_TIM_PWM_MSPDEINIT_CB_ID = 0x07U /*!< TIM PWM MspDeInit Callback ID */ + , HAL_TIM_ONE_PULSE_MSPINIT_CB_ID = 0x08U /*!< TIM One Pulse MspInit Callback ID */ + , HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID = 0x09U /*!< TIM One Pulse MspDeInit Callback ID */ + , HAL_TIM_ENCODER_MSPINIT_CB_ID = 0x0AU /*!< TIM Encoder MspInit Callback ID */ + , HAL_TIM_ENCODER_MSPDEINIT_CB_ID = 0x0BU /*!< TIM Encoder MspDeInit Callback ID */ + , HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID = 0x0CU /*!< TIM Hall Sensor MspDeInit Callback ID */ + , HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID = 0x0DU /*!< TIM Hall Sensor MspDeInit Callback ID */ + , HAL_TIM_PERIOD_ELAPSED_CB_ID = 0x0EU /*!< TIM Period Elapsed Callback ID */ + , HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID = 0x0FU /*!< TIM Period Elapsed half complete Callback ID */ + , HAL_TIM_TRIGGER_CB_ID = 0x10U /*!< TIM Trigger Callback ID */ + , HAL_TIM_TRIGGER_HALF_CB_ID = 0x11U /*!< TIM Trigger half complete Callback ID */ + , HAL_TIM_IC_CAPTURE_CB_ID = 0x12U /*!< TIM Input Capture Callback ID */ + , HAL_TIM_IC_CAPTURE_HALF_CB_ID = 0x13U /*!< TIM Input Capture half complete Callback ID */ + , HAL_TIM_OC_DELAY_ELAPSED_CB_ID = 0x14U /*!< TIM Output Compare Delay Elapsed Callback ID */ + , HAL_TIM_PWM_PULSE_FINISHED_CB_ID = 0x15U /*!< TIM PWM Pulse Finished Callback ID */ + , HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID = 0x16U /*!< TIM PWM Pulse Finished half complete Callback ID */ + , HAL_TIM_ERROR_CB_ID = 0x17U /*!< TIM Error Callback ID */ + , HAL_TIM_COMMUTATION_CB_ID = 0x18U /*!< TIM Commutation Callback ID */ + , HAL_TIM_COMMUTATION_HALF_CB_ID = 0x19U /*!< TIM Commutation half complete Callback ID */ + , HAL_TIM_BREAK_CB_ID = 0x1AU /*!< TIM Break Callback ID */ +} HAL_TIM_CallbackIDTypeDef; + +/** + * @brief HAL TIM Callback pointer definition + */ +typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to the TIM callback function */ + +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ +/* End of exported types -----------------------------------------------------*/ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup TIM_Exported_Constants TIM Exported Constants + * @{ + */ + +/** @defgroup TIM_ClearInput_Source TIM Clear Input Source + * @{ + */ +#define TIM_CLEARINPUTSOURCE_NONE 0x00000000U /*!< OCREF_CLR is disabled */ +#define TIM_CLEARINPUTSOURCE_ETR 0x00000001U /*!< OCREF_CLR is connected to ETRF input */ +/** + * @} + */ + +/** @defgroup TIM_DMA_Base_address TIM DMA Base Address + * @{ + */ +#define TIM_DMABASE_CR1 0x00000000U +#define TIM_DMABASE_CR2 0x00000001U +#define TIM_DMABASE_SMCR 0x00000002U +#define TIM_DMABASE_DIER 0x00000003U +#define TIM_DMABASE_SR 0x00000004U +#define TIM_DMABASE_EGR 0x00000005U +#define TIM_DMABASE_CCMR1 0x00000006U +#define TIM_DMABASE_CCMR2 0x00000007U +#define TIM_DMABASE_CCER 0x00000008U +#define TIM_DMABASE_CNT 0x00000009U +#define TIM_DMABASE_PSC 0x0000000AU +#define TIM_DMABASE_ARR 0x0000000BU +#define TIM_DMABASE_RCR 0x0000000CU +#define TIM_DMABASE_CCR1 0x0000000DU +#define TIM_DMABASE_CCR2 0x0000000EU +#define TIM_DMABASE_CCR3 0x0000000FU +#define TIM_DMABASE_CCR4 0x00000010U +#define TIM_DMABASE_BDTR 0x00000011U +#define TIM_DMABASE_DCR 0x00000012U +#define TIM_DMABASE_DMAR 0x00000013U +/** + * @} + */ + +/** @defgroup TIM_Event_Source TIM Event Source + * @{ + */ +#define TIM_EVENTSOURCE_UPDATE TIM_EGR_UG /*!< Reinitialize the counter and generates an update of the registers */ +#define TIM_EVENTSOURCE_CC1 TIM_EGR_CC1G /*!< A capture/compare event is generated on channel 1 */ +#define TIM_EVENTSOURCE_CC2 TIM_EGR_CC2G /*!< A capture/compare event is generated on channel 2 */ +#define TIM_EVENTSOURCE_CC3 TIM_EGR_CC3G /*!< A capture/compare event is generated on channel 3 */ +#define TIM_EVENTSOURCE_CC4 TIM_EGR_CC4G /*!< A capture/compare event is generated on channel 4 */ +#define TIM_EVENTSOURCE_COM TIM_EGR_COMG /*!< A commutation event is generated */ +#define TIM_EVENTSOURCE_TRIGGER TIM_EGR_TG /*!< A trigger event is generated */ +#define TIM_EVENTSOURCE_BREAK TIM_EGR_BG /*!< A break event is generated */ +/** + * @} + */ + +/** @defgroup TIM_Input_Channel_Polarity TIM Input Channel polarity + * @{ + */ +#define TIM_INPUTCHANNELPOLARITY_RISING 0x00000000U /*!< Polarity for TIx source */ +#define TIM_INPUTCHANNELPOLARITY_FALLING TIM_CCER_CC1P /*!< Polarity for TIx source */ +#define TIM_INPUTCHANNELPOLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< Polarity for TIx source */ +/** + * @} + */ + +/** @defgroup TIM_ETR_Polarity TIM ETR Polarity + * @{ + */ +#define TIM_ETRPOLARITY_INVERTED TIM_SMCR_ETP /*!< Polarity for ETR source */ +#define TIM_ETRPOLARITY_NONINVERTED 0x00000000U /*!< Polarity for ETR source */ +/** + * @} + */ + +/** @defgroup TIM_ETR_Prescaler TIM ETR Prescaler + * @{ + */ +#define TIM_ETRPRESCALER_DIV1 0x00000000U /*!< No prescaler is used */ +#define TIM_ETRPRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR input source is divided by 2 */ +#define TIM_ETRPRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR input source is divided by 4 */ +#define TIM_ETRPRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR input source is divided by 8 */ +/** + * @} + */ + +/** @defgroup TIM_Counter_Mode TIM Counter Mode + * @{ + */ +#define TIM_COUNTERMODE_UP 0x00000000U /*!< Counter used as up-counter */ +#define TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as down-counter */ +#define TIM_COUNTERMODE_CENTERALIGNED1 TIM_CR1_CMS_0 /*!< Center-aligned mode 1 */ +#define TIM_COUNTERMODE_CENTERALIGNED2 TIM_CR1_CMS_1 /*!< Center-aligned mode 2 */ +#define TIM_COUNTERMODE_CENTERALIGNED3 TIM_CR1_CMS /*!< Center-aligned mode 3 */ +/** + * @} + */ + +/** @defgroup TIM_ClockDivision TIM Clock Division + * @{ + */ +#define TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< Clock division: tDTS=tCK_INT */ +#define TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< Clock division: tDTS=2*tCK_INT */ +#define TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< Clock division: tDTS=4*tCK_INT */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_State TIM Output Compare State + * @{ + */ +#define TIM_OUTPUTSTATE_DISABLE 0x00000000U /*!< Capture/Compare 1 output disabled */ +#define TIM_OUTPUTSTATE_ENABLE TIM_CCER_CC1E /*!< Capture/Compare 1 output enabled */ +/** + * @} + */ + +/** @defgroup TIM_AutoReloadPreload TIM Auto-Reload Preload + * @{ + */ +#define TIM_AUTORELOAD_PRELOAD_DISABLE 0x00000000U /*!< TIMx_ARR register is not buffered */ +#define TIM_AUTORELOAD_PRELOAD_ENABLE TIM_CR1_ARPE /*!< TIMx_ARR register is buffered */ + +/** + * @} + */ + +/** @defgroup TIM_Output_Fast_State TIM Output Fast State + * @{ + */ +#define TIM_OCFAST_DISABLE 0x00000000U /*!< Output Compare fast disable */ +#define TIM_OCFAST_ENABLE TIM_CCMR1_OC1FE /*!< Output Compare fast enable */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_N_State TIM Complementary Output Compare State + * @{ + */ +#define TIM_OUTPUTNSTATE_DISABLE 0x00000000U /*!< OCxN is disabled */ +#define TIM_OUTPUTNSTATE_ENABLE TIM_CCER_CC1NE /*!< OCxN is enabled */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_Polarity TIM Output Compare Polarity + * @{ + */ +#define TIM_OCPOLARITY_HIGH 0x00000000U /*!< Capture/Compare output polarity */ +#define TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< Capture/Compare output polarity */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_N_Polarity TIM Complementary Output Compare Polarity + * @{ + */ +#define TIM_OCNPOLARITY_HIGH 0x00000000U /*!< Capture/Compare complementary output polarity */ +#define TIM_OCNPOLARITY_LOW TIM_CCER_CC1NP /*!< Capture/Compare complementary output polarity */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_Idle_State TIM Output Compare Idle State + * @{ + */ +#define TIM_OCIDLESTATE_SET TIM_CR2_OIS1 /*!< Output Idle state: OCx=1 when MOE=0 */ +#define TIM_OCIDLESTATE_RESET 0x00000000U /*!< Output Idle state: OCx=0 when MOE=0 */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_N_Idle_State TIM Complementary Output Compare Idle State + * @{ + */ +#define TIM_OCNIDLESTATE_SET TIM_CR2_OIS1N /*!< Complementary output Idle state: OCxN=1 when MOE=0 */ +#define TIM_OCNIDLESTATE_RESET 0x00000000U /*!< Complementary output Idle state: OCxN=0 when MOE=0 */ +/** + * @} + */ + +/** @defgroup TIM_Input_Capture_Polarity TIM Input Capture Polarity + * @{ + */ +#define TIM_ICPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Capture triggered by rising edge on timer input */ +#define TIM_ICPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Capture triggered by falling edge on timer input */ +#define TIM_ICPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Capture triggered by both rising and falling edges on timer input*/ +/** + * @} + */ + +/** @defgroup TIM_Encoder_Input_Polarity TIM Encoder Input Polarity + * @{ + */ +#define TIM_ENCODERINPUTPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Encoder input with rising edge polarity */ +#define TIM_ENCODERINPUTPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Encoder input with falling edge polarity */ +/** + * @} + */ + +/** @defgroup TIM_Input_Capture_Selection TIM Input Capture Selection + * @{ + */ +#define TIM_ICSELECTION_DIRECTTI TIM_CCMR1_CC1S_0 /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to IC1, IC2, IC3 or IC4, respectively */ +#define TIM_ICSELECTION_INDIRECTTI TIM_CCMR1_CC1S_1 /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to IC2, IC1, IC4 or IC3, respectively */ +#define TIM_ICSELECTION_TRC TIM_CCMR1_CC1S /*!< TIM Input 1, 2, 3 or 4 is selected to be connected to TRC */ +/** + * @} + */ + +/** @defgroup TIM_Input_Capture_Prescaler TIM Input Capture Prescaler + * @{ + */ +#define TIM_ICPSC_DIV1 0x00000000U /*!< Capture performed each time an edge is detected on the capture input */ +#define TIM_ICPSC_DIV2 TIM_CCMR1_IC1PSC_0 /*!< Capture performed once every 2 events */ +#define TIM_ICPSC_DIV4 TIM_CCMR1_IC1PSC_1 /*!< Capture performed once every 4 events */ +#define TIM_ICPSC_DIV8 TIM_CCMR1_IC1PSC /*!< Capture performed once every 8 events */ +/** + * @} + */ + +/** @defgroup TIM_One_Pulse_Mode TIM One Pulse Mode + * @{ + */ +#define TIM_OPMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */ +#define TIM_OPMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */ +/** + * @} + */ + +/** @defgroup TIM_Encoder_Mode TIM Encoder Mode + * @{ + */ +#define TIM_ENCODERMODE_TI1 TIM_SMCR_SMS_0 /*!< Quadrature encoder mode 1, x2 mode, counts up/down on TI1FP1 edge depending on TI2FP2 level */ +#define TIM_ENCODERMODE_TI2 TIM_SMCR_SMS_1 /*!< Quadrature encoder mode 2, x2 mode, counts up/down on TI2FP2 edge depending on TI1FP1 level. */ +#define TIM_ENCODERMODE_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Quadrature encoder mode 3, x4 mode, counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. */ +/** + * @} + */ + +/** @defgroup TIM_Interrupt_definition TIM interrupt Definition + * @{ + */ +#define TIM_IT_UPDATE TIM_DIER_UIE /*!< Update interrupt */ +#define TIM_IT_CC1 TIM_DIER_CC1IE /*!< Capture/Compare 1 interrupt */ +#define TIM_IT_CC2 TIM_DIER_CC2IE /*!< Capture/Compare 2 interrupt */ +#define TIM_IT_CC3 TIM_DIER_CC3IE /*!< Capture/Compare 3 interrupt */ +#define TIM_IT_CC4 TIM_DIER_CC4IE /*!< Capture/Compare 4 interrupt */ +#define TIM_IT_COM TIM_DIER_COMIE /*!< Commutation interrupt */ +#define TIM_IT_TRIGGER TIM_DIER_TIE /*!< Trigger interrupt */ +#define TIM_IT_BREAK TIM_DIER_BIE /*!< Break interrupt */ +/** + * @} + */ + +/** @defgroup TIM_Commutation_Source TIM Commutation Source + * @{ + */ +#define TIM_COMMUTATION_TRGI TIM_CR2_CCUS /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit or when an rising edge occurs on trigger input */ +#define TIM_COMMUTATION_SOFTWARE 0x00000000U /*!< When Capture/compare control bits are preloaded, they are updated by setting the COMG bit */ +/** + * @} + */ + +/** @defgroup TIM_DMA_sources TIM DMA Sources + * @{ + */ +#define TIM_DMA_UPDATE TIM_DIER_UDE /*!< DMA request is triggered by the update event */ +#define TIM_DMA_CC1 TIM_DIER_CC1DE /*!< DMA request is triggered by the capture/compare macth 1 event */ +#define TIM_DMA_CC2 TIM_DIER_CC2DE /*!< DMA request is triggered by the capture/compare macth 2 event event */ +#define TIM_DMA_CC3 TIM_DIER_CC3DE /*!< DMA request is triggered by the capture/compare macth 3 event event */ +#define TIM_DMA_CC4 TIM_DIER_CC4DE /*!< DMA request is triggered by the capture/compare macth 4 event event */ +#define TIM_DMA_COM TIM_DIER_COMDE /*!< DMA request is triggered by the commutation event */ +#define TIM_DMA_TRIGGER TIM_DIER_TDE /*!< DMA request is triggered by the trigger event */ +/** + * @} + */ + +/** @defgroup TIM_CC_DMA_Request CCx DMA request selection + * @{ + */ +#define TIM_CCDMAREQUEST_CC 0x00000000U /*!< CCx DMA request sent when capture or compare match event occurs */ +#define TIM_CCDMAREQUEST_UPDATE TIM_CR2_CCDS /*!< CCx DMA requests sent when update event occurs */ +/** + * @} + */ + +/** @defgroup TIM_Flag_definition TIM Flag Definition + * @{ + */ +#define TIM_FLAG_UPDATE TIM_SR_UIF /*!< Update interrupt flag */ +#define TIM_FLAG_CC1 TIM_SR_CC1IF /*!< Capture/Compare 1 interrupt flag */ +#define TIM_FLAG_CC2 TIM_SR_CC2IF /*!< Capture/Compare 2 interrupt flag */ +#define TIM_FLAG_CC3 TIM_SR_CC3IF /*!< Capture/Compare 3 interrupt flag */ +#define TIM_FLAG_CC4 TIM_SR_CC4IF /*!< Capture/Compare 4 interrupt flag */ +#define TIM_FLAG_COM TIM_SR_COMIF /*!< Commutation interrupt flag */ +#define TIM_FLAG_TRIGGER TIM_SR_TIF /*!< Trigger interrupt flag */ +#define TIM_FLAG_BREAK TIM_SR_BIF /*!< Break interrupt flag */ +#define TIM_FLAG_CC1OF TIM_SR_CC1OF /*!< Capture 1 overcapture flag */ +#define TIM_FLAG_CC2OF TIM_SR_CC2OF /*!< Capture 2 overcapture flag */ +#define TIM_FLAG_CC3OF TIM_SR_CC3OF /*!< Capture 3 overcapture flag */ +#define TIM_FLAG_CC4OF TIM_SR_CC4OF /*!< Capture 4 overcapture flag */ +/** + * @} + */ + +/** @defgroup TIM_Channel TIM Channel + * @{ + */ +#define TIM_CHANNEL_1 0x00000000U /*!< Capture/compare channel 1 identifier */ +#define TIM_CHANNEL_2 0x00000004U /*!< Capture/compare channel 2 identifier */ +#define TIM_CHANNEL_3 0x00000008U /*!< Capture/compare channel 3 identifier */ +#define TIM_CHANNEL_4 0x0000000CU /*!< Capture/compare channel 4 identifier */ +#define TIM_CHANNEL_ALL 0x0000003CU /*!< Global Capture/compare channel identifier */ +/** + * @} + */ + +/** @defgroup TIM_Clock_Source TIM Clock Source + * @{ + */ +#define TIM_CLOCKSOURCE_INTERNAL TIM_SMCR_ETPS_0 /*!< Internal clock source */ +#define TIM_CLOCKSOURCE_ETRMODE1 TIM_TS_ETRF /*!< External clock source mode 1 (ETRF) */ +#define TIM_CLOCKSOURCE_ETRMODE2 TIM_SMCR_ETPS_1 /*!< External clock source mode 2 */ +#define TIM_CLOCKSOURCE_TI1ED TIM_TS_TI1F_ED /*!< External clock source mode 1 (TTI1FP1 + edge detect.) */ +#define TIM_CLOCKSOURCE_TI1 TIM_TS_TI1FP1 /*!< External clock source mode 1 (TTI1FP1) */ +#define TIM_CLOCKSOURCE_TI2 TIM_TS_TI2FP2 /*!< External clock source mode 1 (TTI2FP2) */ +#define TIM_CLOCKSOURCE_ITR0 TIM_TS_ITR0 /*!< External clock source mode 1 (ITR0) */ +#define TIM_CLOCKSOURCE_ITR1 TIM_TS_ITR1 /*!< External clock source mode 1 (ITR1) */ +#define TIM_CLOCKSOURCE_ITR2 TIM_TS_ITR2 /*!< External clock source mode 1 (ITR2) */ +#define TIM_CLOCKSOURCE_ITR3 TIM_TS_ITR3 /*!< External clock source mode 1 (ITR3) */ +/** + * @} + */ + +/** @defgroup TIM_Clock_Polarity TIM Clock Polarity + * @{ + */ +#define TIM_CLOCKPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx clock sources */ +#define TIM_CLOCKPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx clock sources */ +#define TIM_CLOCKPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIx clock sources */ +#define TIM_CLOCKPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIx clock sources */ +#define TIM_CLOCKPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIx clock sources */ +/** + * @} + */ + +/** @defgroup TIM_Clock_Prescaler TIM Clock Prescaler + * @{ + */ +#define TIM_CLOCKPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ +#define TIM_CLOCKPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Clock: Capture performed once every 2 events. */ +#define TIM_CLOCKPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Clock: Capture performed once every 4 events. */ +#define TIM_CLOCKPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Clock: Capture performed once every 8 events. */ +/** + * @} + */ + +/** @defgroup TIM_ClearInput_Polarity TIM Clear Input Polarity + * @{ + */ +#define TIM_CLEARINPUTPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx pin */ +#define TIM_CLEARINPUTPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx pin */ +/** + * @} + */ + +/** @defgroup TIM_ClearInput_Prescaler TIM Clear Input Prescaler + * @{ + */ +#define TIM_CLEARINPUTPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ +#define TIM_CLEARINPUTPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR pin: Capture performed once every 2 events. */ +#define TIM_CLEARINPUTPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR pin: Capture performed once every 4 events. */ +#define TIM_CLEARINPUTPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR pin: Capture performed once every 8 events. */ +/** + * @} + */ + +/** @defgroup TIM_OSSR_Off_State_Selection_for_Run_mode_state TIM OSSR OffState Selection for Run mode state + * @{ + */ +#define TIM_OSSR_ENABLE TIM_BDTR_OSSR /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */ +#define TIM_OSSR_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */ +/** + * @} + */ + +/** @defgroup TIM_OSSI_Off_State_Selection_for_Idle_mode_state TIM OSSI OffState Selection for Idle mode state + * @{ + */ +#define TIM_OSSI_ENABLE TIM_BDTR_OSSI /*!< When inactive, OC/OCN outputs are enabled (still controlled by the timer) */ +#define TIM_OSSI_DISABLE 0x00000000U /*!< When inactive, OC/OCN outputs are disabled (not controlled any longer by the timer) */ +/** + * @} + */ +/** @defgroup TIM_Lock_level TIM Lock level + * @{ + */ +#define TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF */ +#define TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */ +#define TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */ +#define TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */ +/** + * @} + */ + +/** @defgroup TIM_Break_Input_enable_disable TIM Break Input Enable + * @{ + */ +#define TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break input BRK is enabled */ +#define TIM_BREAK_DISABLE 0x00000000U /*!< Break input BRK is disabled */ +/** + * @} + */ + +/** @defgroup TIM_Break_Polarity TIM Break Input Polarity + * @{ + */ +#define TIM_BREAKPOLARITY_LOW 0x00000000U /*!< Break input BRK is active low */ +#define TIM_BREAKPOLARITY_HIGH TIM_BDTR_BKP /*!< Break input BRK is active high */ +/** + * @} + */ + +/** @defgroup TIM_AOE_Bit_Set_Reset TIM Automatic Output Enable + * @{ + */ +#define TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */ +#define TIM_AUTOMATICOUTPUT_ENABLE TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event (if none of the break inputs BRK and BRK2 is active) */ +/** + * @} + */ + +/** @defgroup TIM_Master_Mode_Selection TIM Master Mode Selection + * @{ + */ +#define TIM_TRGO_RESET 0x00000000U /*!< TIMx_EGR.UG bit is used as trigger output (TRGO) */ +#define TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< TIMx_CR1.CEN bit is used as trigger output (TRGO) */ +#define TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output (TRGO) */ +#define TIM_TRGO_OC1 (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< Capture or a compare match 1 is used as trigger output (TRGO) */ +#define TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output (TRGO) */ +#define TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output(TRGO) */ +#define TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output(TRGO) */ +#define TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output(TRGO) */ +/** + * @} + */ + +/** @defgroup TIM_Master_Slave_Mode TIM Master/Slave Mode + * @{ + */ +#define TIM_MASTERSLAVEMODE_ENABLE TIM_SMCR_MSM /*!< No action */ +#define TIM_MASTERSLAVEMODE_DISABLE 0x00000000U /*!< Master/slave mode is selected */ +/** + * @} + */ + +/** @defgroup TIM_Slave_Mode TIM Slave mode + * @{ + */ +#define TIM_SLAVEMODE_DISABLE 0x00000000U /*!< Slave mode disabled */ +#define TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode */ +#define TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode */ +#define TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode */ +#define TIM_SLAVEMODE_EXTERNAL1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< External Clock Mode 1 */ +/** + * @} + */ + +/** @defgroup TIM_Output_Compare_and_PWM_modes TIM Output Compare and PWM Modes + * @{ + */ +#define TIM_OCMODE_TIMING 0x00000000U /*!< Frozen */ +#define TIM_OCMODE_ACTIVE TIM_CCMR1_OC1M_0 /*!< Set channel to active level on match */ +#define TIM_OCMODE_INACTIVE TIM_CCMR1_OC1M_1 /*!< Set channel to inactive level on match */ +#define TIM_OCMODE_TOGGLE (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< Toggle */ +#define TIM_OCMODE_PWM1 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1) /*!< PWM mode 1 */ +#define TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!< PWM mode 2 */ +#define TIM_OCMODE_FORCED_ACTIVE (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0) /*!< Force active level */ +#define TIM_OCMODE_FORCED_INACTIVE TIM_CCMR1_OC1M_2 /*!< Force inactive level */ +/** + * @} + */ + +/** @defgroup TIM_Trigger_Selection TIM Trigger Selection + * @{ + */ +#define TIM_TS_ITR0 0x00000000U /*!< Internal Trigger 0 (ITR0) */ +#define TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) */ +#define TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) */ +#define TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) */ +#define TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) */ +#define TIM_TS_TI1FP1 (TIM_SMCR_TS_0 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 1 (TI1FP1) */ +#define TIM_TS_TI2FP2 (TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered Timer Input 2 (TI2FP2) */ +#define TIM_TS_ETRF (TIM_SMCR_TS_0 | TIM_SMCR_TS_1 | TIM_SMCR_TS_2) /*!< Filtered External Trigger input (ETRF) */ +#define TIM_TS_NONE 0x0000FFFFU /*!< No trigger selected */ +/** + * @} + */ + +/** @defgroup TIM_Trigger_Polarity TIM Trigger Polarity + * @{ + */ +#define TIM_TRIGGERPOLARITY_INVERTED TIM_ETRPOLARITY_INVERTED /*!< Polarity for ETRx trigger sources */ +#define TIM_TRIGGERPOLARITY_NONINVERTED TIM_ETRPOLARITY_NONINVERTED /*!< Polarity for ETRx trigger sources */ +#define TIM_TRIGGERPOLARITY_RISING TIM_INPUTCHANNELPOLARITY_RISING /*!< Polarity for TIxFPx or TI1_ED trigger sources */ +#define TIM_TRIGGERPOLARITY_FALLING TIM_INPUTCHANNELPOLARITY_FALLING /*!< Polarity for TIxFPx or TI1_ED trigger sources */ +#define TIM_TRIGGERPOLARITY_BOTHEDGE TIM_INPUTCHANNELPOLARITY_BOTHEDGE /*!< Polarity for TIxFPx or TI1_ED trigger sources */ +/** + * @} + */ + +/** @defgroup TIM_Trigger_Prescaler TIM Trigger Prescaler + * @{ + */ +#define TIM_TRIGGERPRESCALER_DIV1 TIM_ETRPRESCALER_DIV1 /*!< No prescaler is used */ +#define TIM_TRIGGERPRESCALER_DIV2 TIM_ETRPRESCALER_DIV2 /*!< Prescaler for External ETR Trigger: Capture performed once every 2 events. */ +#define TIM_TRIGGERPRESCALER_DIV4 TIM_ETRPRESCALER_DIV4 /*!< Prescaler for External ETR Trigger: Capture performed once every 4 events. */ +#define TIM_TRIGGERPRESCALER_DIV8 TIM_ETRPRESCALER_DIV8 /*!< Prescaler for External ETR Trigger: Capture performed once every 8 events. */ +/** + * @} + */ + +/** @defgroup TIM_TI1_Selection TIM TI1 Input Selection + * @{ + */ +#define TIM_TI1SELECTION_CH1 0x00000000U /*!< The TIMx_CH1 pin is connected to TI1 input */ +#define TIM_TI1SELECTION_XORCOMBINATION TIM_CR2_TI1S /*!< The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) */ +/** + * @} + */ + +/** @defgroup TIM_DMA_Burst_Length TIM DMA Burst Length + * @{ + */ +#define TIM_DMABURSTLENGTH_1TRANSFER 0x00000000U /*!< The transfer is done to 1 register starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_2TRANSFERS 0x00000100U /*!< The transfer is done to 2 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_3TRANSFERS 0x00000200U /*!< The transfer is done to 3 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_4TRANSFERS 0x00000300U /*!< The transfer is done to 4 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_5TRANSFERS 0x00000400U /*!< The transfer is done to 5 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_6TRANSFERS 0x00000500U /*!< The transfer is done to 6 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_7TRANSFERS 0x00000600U /*!< The transfer is done to 7 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_8TRANSFERS 0x00000700U /*!< The transfer is done to 8 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_9TRANSFERS 0x00000800U /*!< The transfer is done to 9 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_10TRANSFERS 0x00000900U /*!< The transfer is done to 10 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_11TRANSFERS 0x00000A00U /*!< The transfer is done to 11 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_12TRANSFERS 0x00000B00U /*!< The transfer is done to 12 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_13TRANSFERS 0x00000C00U /*!< The transfer is done to 13 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_14TRANSFERS 0x00000D00U /*!< The transfer is done to 14 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_15TRANSFERS 0x00000E00U /*!< The transfer is done to 15 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_16TRANSFERS 0x00000F00U /*!< The transfer is done to 16 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_17TRANSFERS 0x00001000U /*!< The transfer is done to 17 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +#define TIM_DMABURSTLENGTH_18TRANSFERS 0x00001100U /*!< The transfer is done to 18 registers starting from TIMx_CR1 + TIMx_DCR.DBA */ +/** + * @} + */ + +/** @defgroup DMA_Handle_index TIM DMA Handle Index + * @{ + */ +#define TIM_DMA_ID_UPDATE ((uint16_t) 0x0000) /*!< Index of the DMA handle used for Update DMA requests */ +#define TIM_DMA_ID_CC1 ((uint16_t) 0x0001) /*!< Index of the DMA handle used for Capture/Compare 1 DMA requests */ +#define TIM_DMA_ID_CC2 ((uint16_t) 0x0002) /*!< Index of the DMA handle used for Capture/Compare 2 DMA requests */ +#define TIM_DMA_ID_CC3 ((uint16_t) 0x0003) /*!< Index of the DMA handle used for Capture/Compare 3 DMA requests */ +#define TIM_DMA_ID_CC4 ((uint16_t) 0x0004) /*!< Index of the DMA handle used for Capture/Compare 4 DMA requests */ +#define TIM_DMA_ID_COMMUTATION ((uint16_t) 0x0005) /*!< Index of the DMA handle used for Commutation DMA requests */ +#define TIM_DMA_ID_TRIGGER ((uint16_t) 0x0006) /*!< Index of the DMA handle used for Trigger DMA requests */ +/** + * @} + */ + +/** @defgroup Channel_CC_State TIM Capture/Compare Channel State + * @{ + */ +#define TIM_CCx_ENABLE 0x00000001U /*!< Input or output channel is enabled */ +#define TIM_CCx_DISABLE 0x00000000U /*!< Input or output channel is disabled */ +#define TIM_CCxN_ENABLE 0x00000004U /*!< Complementary output channel is enabled */ +#define TIM_CCxN_DISABLE 0x00000000U /*!< Complementary output channel is enabled */ +/** + * @} + */ + +/** + * @} + */ +/* End of exported constants -------------------------------------------------*/ + +/* Exported macros -----------------------------------------------------------*/ +/** @defgroup TIM_Exported_Macros TIM Exported Macros + * @{ + */ + +/** @brief Reset TIM handle state. + * @param __HANDLE__ TIM handle. + * @retval None + */ +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) do { \ + (__HANDLE__)->State = HAL_TIM_STATE_RESET; \ + (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \ + (__HANDLE__)->Base_MspInitCallback = NULL; \ + (__HANDLE__)->Base_MspDeInitCallback = NULL; \ + (__HANDLE__)->IC_MspInitCallback = NULL; \ + (__HANDLE__)->IC_MspDeInitCallback = NULL; \ + (__HANDLE__)->OC_MspInitCallback = NULL; \ + (__HANDLE__)->OC_MspDeInitCallback = NULL; \ + (__HANDLE__)->PWM_MspInitCallback = NULL; \ + (__HANDLE__)->PWM_MspDeInitCallback = NULL; \ + (__HANDLE__)->OnePulse_MspInitCallback = NULL; \ + (__HANDLE__)->OnePulse_MspDeInitCallback = NULL; \ + (__HANDLE__)->Encoder_MspInitCallback = NULL; \ + (__HANDLE__)->Encoder_MspDeInitCallback = NULL; \ + (__HANDLE__)->HallSensor_MspInitCallback = NULL; \ + (__HANDLE__)->HallSensor_MspDeInitCallback = NULL; \ + } while(0) +#else +#define __HAL_TIM_RESET_HANDLE_STATE(__HANDLE__) do { \ + (__HANDLE__)->State = HAL_TIM_STATE_RESET; \ + (__HANDLE__)->ChannelState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[0] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[1] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[2] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->ChannelNState[3] = HAL_TIM_CHANNEL_STATE_RESET; \ + (__HANDLE__)->DMABurstState = HAL_DMA_BURST_STATE_RESET; \ + } while(0) +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @brief Enable the TIM peripheral. + * @param __HANDLE__ TIM handle + * @retval None + */ +#define __HAL_TIM_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1|=(TIM_CR1_CEN)) + +/** + * @brief Enable the TIM main Output. + * @param __HANDLE__ TIM handle + * @retval None + */ +#define __HAL_TIM_MOE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->BDTR|=(TIM_BDTR_MOE)) + +/** + * @brief Disable the TIM peripheral. + * @param __HANDLE__ TIM handle + * @retval None + */ +#define __HAL_TIM_DISABLE(__HANDLE__) \ + do { \ + if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) \ + { \ + if(((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) \ + { \ + (__HANDLE__)->Instance->CR1 &= ~(TIM_CR1_CEN); \ + } \ + } \ + } while(0) + +/** + * @brief Disable the TIM main Output. + * @param __HANDLE__ TIM handle + * @retval None + * @note The Main Output Enable of a timer instance is disabled only if all the CCx and CCxN channels have been + * disabled + */ +#define __HAL_TIM_MOE_DISABLE(__HANDLE__) \ + do { \ + if (((__HANDLE__)->Instance->CCER & TIM_CCER_CCxE_MASK) == 0UL) \ + { \ + if(((__HANDLE__)->Instance->CCER & TIM_CCER_CCxNE_MASK) == 0UL) \ + { \ + (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE); \ + } \ + } \ + } while(0) + +/** + * @brief Disable the TIM main Output. + * @param __HANDLE__ TIM handle + * @retval None + * @note The Main Output Enable of a timer instance is disabled unconditionally + */ +#define __HAL_TIM_MOE_DISABLE_UNCONDITIONALLY(__HANDLE__) (__HANDLE__)->Instance->BDTR &= ~(TIM_BDTR_MOE) + +/** @brief Enable the specified TIM interrupt. + * @param __HANDLE__ specifies the TIM Handle. + * @param __INTERRUPT__ specifies the TIM interrupt source to enable. + * This parameter can be one of the following values: + * @arg TIM_IT_UPDATE: Update interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC2: Capture/Compare 2 interrupt + * @arg TIM_IT_CC3: Capture/Compare 3 interrupt + * @arg TIM_IT_CC4: Capture/Compare 4 interrupt + * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_TRIGGER: Trigger interrupt + * @arg TIM_IT_BREAK: Break interrupt + * @retval None + */ +#define __HAL_TIM_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER |= (__INTERRUPT__)) + +/** @brief Disable the specified TIM interrupt. + * @param __HANDLE__ specifies the TIM Handle. + * @param __INTERRUPT__ specifies the TIM interrupt source to disable. + * This parameter can be one of the following values: + * @arg TIM_IT_UPDATE: Update interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC2: Capture/Compare 2 interrupt + * @arg TIM_IT_CC3: Capture/Compare 3 interrupt + * @arg TIM_IT_CC4: Capture/Compare 4 interrupt + * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_TRIGGER: Trigger interrupt + * @arg TIM_IT_BREAK: Break interrupt + * @retval None + */ +#define __HAL_TIM_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->DIER &= ~(__INTERRUPT__)) + +/** @brief Enable the specified DMA request. + * @param __HANDLE__ specifies the TIM Handle. + * @param __DMA__ specifies the TIM DMA request to enable. + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: Update DMA request + * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request + * @arg TIM_DMA_CC2: Capture/Compare 2 DMA request + * @arg TIM_DMA_CC3: Capture/Compare 3 DMA request + * @arg TIM_DMA_CC4: Capture/Compare 4 DMA request + * @arg TIM_DMA_COM: Commutation DMA request + * @arg TIM_DMA_TRIGGER: Trigger DMA request + * @retval None + */ +#define __HAL_TIM_ENABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER |= (__DMA__)) + +/** @brief Disable the specified DMA request. + * @param __HANDLE__ specifies the TIM Handle. + * @param __DMA__ specifies the TIM DMA request to disable. + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: Update DMA request + * @arg TIM_DMA_CC1: Capture/Compare 1 DMA request + * @arg TIM_DMA_CC2: Capture/Compare 2 DMA request + * @arg TIM_DMA_CC3: Capture/Compare 3 DMA request + * @arg TIM_DMA_CC4: Capture/Compare 4 DMA request + * @arg TIM_DMA_COM: Commutation DMA request + * @arg TIM_DMA_TRIGGER: Trigger DMA request + * @retval None + */ +#define __HAL_TIM_DISABLE_DMA(__HANDLE__, __DMA__) ((__HANDLE__)->Instance->DIER &= ~(__DMA__)) + +/** @brief Check whether the specified TIM interrupt flag is set or not. + * @param __HANDLE__ specifies the TIM Handle. + * @param __FLAG__ specifies the TIM interrupt flag to check. + * This parameter can be one of the following values: + * @arg TIM_FLAG_UPDATE: Update interrupt flag + * @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag + * @arg TIM_FLAG_CC2: Capture/Compare 2 interrupt flag + * @arg TIM_FLAG_CC3: Capture/Compare 3 interrupt flag + * @arg TIM_FLAG_CC4: Capture/Compare 4 interrupt flag + * @arg TIM_FLAG_COM: Commutation interrupt flag + * @arg TIM_FLAG_TRIGGER: Trigger interrupt flag + * @arg TIM_FLAG_BREAK: Break interrupt flag + * @arg TIM_FLAG_CC1OF: Capture/Compare 1 overcapture flag + * @arg TIM_FLAG_CC2OF: Capture/Compare 2 overcapture flag + * @arg TIM_FLAG_CC3OF: Capture/Compare 3 overcapture flag + * @arg TIM_FLAG_CC4OF: Capture/Compare 4 overcapture flag + * @retval The new state of __FLAG__ (TRUE or FALSE). + */ +#define __HAL_TIM_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR &(__FLAG__)) == (__FLAG__)) + +/** @brief Clear the specified TIM interrupt flag. + * @param __HANDLE__ specifies the TIM Handle. + * @param __FLAG__ specifies the TIM interrupt flag to clear. + * This parameter can be one of the following values: + * @arg TIM_FLAG_UPDATE: Update interrupt flag + * @arg TIM_FLAG_CC1: Capture/Compare 1 interrupt flag + * @arg TIM_FLAG_CC2: Capture/Compare 2 interrupt flag + * @arg TIM_FLAG_CC3: Capture/Compare 3 interrupt flag + * @arg TIM_FLAG_CC4: Capture/Compare 4 interrupt flag + * @arg TIM_FLAG_COM: Commutation interrupt flag + * @arg TIM_FLAG_TRIGGER: Trigger interrupt flag + * @arg TIM_FLAG_BREAK: Break interrupt flag + * @arg TIM_FLAG_CC1OF: Capture/Compare 1 overcapture flag + * @arg TIM_FLAG_CC2OF: Capture/Compare 2 overcapture flag + * @arg TIM_FLAG_CC3OF: Capture/Compare 3 overcapture flag + * @arg TIM_FLAG_CC4OF: Capture/Compare 4 overcapture flag + * @retval The new state of __FLAG__ (TRUE or FALSE). + */ +#define __HAL_TIM_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__)) + +/** + * @brief Check whether the specified TIM interrupt source is enabled or not. + * @param __HANDLE__ TIM handle + * @param __INTERRUPT__ specifies the TIM interrupt source to check. + * This parameter can be one of the following values: + * @arg TIM_IT_UPDATE: Update interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC2: Capture/Compare 2 interrupt + * @arg TIM_IT_CC3: Capture/Compare 3 interrupt + * @arg TIM_IT_CC4: Capture/Compare 4 interrupt + * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_TRIGGER: Trigger interrupt + * @arg TIM_IT_BREAK: Break interrupt + * @retval The state of TIM_IT (SET or RESET). + */ +#define __HAL_TIM_GET_IT_SOURCE(__HANDLE__, __INTERRUPT__) ((((__HANDLE__)->Instance->DIER & (__INTERRUPT__)) \ + == (__INTERRUPT__)) ? SET : RESET) + +/** @brief Clear the TIM interrupt pending bits. + * @param __HANDLE__ TIM handle + * @param __INTERRUPT__ specifies the interrupt pending bit to clear. + * This parameter can be one of the following values: + * @arg TIM_IT_UPDATE: Update interrupt + * @arg TIM_IT_CC1: Capture/Compare 1 interrupt + * @arg TIM_IT_CC2: Capture/Compare 2 interrupt + * @arg TIM_IT_CC3: Capture/Compare 3 interrupt + * @arg TIM_IT_CC4: Capture/Compare 4 interrupt + * @arg TIM_IT_COM: Commutation interrupt + * @arg TIM_IT_TRIGGER: Trigger interrupt + * @arg TIM_IT_BREAK: Break interrupt + * @retval None + */ +#define __HAL_TIM_CLEAR_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->SR = ~(__INTERRUPT__)) + +/** + * @brief Indicates whether or not the TIM Counter is used as downcounter. + * @param __HANDLE__ TIM handle. + * @retval False (Counter used as upcounter) or True (Counter used as downcounter) + * @note This macro is particularly useful to get the counting mode when the timer operates in Center-aligned mode + * or Encoder mode. + */ +#define __HAL_TIM_IS_TIM_COUNTING_DOWN(__HANDLE__) (((__HANDLE__)->Instance->CR1 &(TIM_CR1_DIR)) == (TIM_CR1_DIR)) + +/** + * @brief Set the TIM Prescaler on runtime. + * @param __HANDLE__ TIM handle. + * @param __PRESC__ specifies the Prescaler new value. + * @retval None + */ +#define __HAL_TIM_SET_PRESCALER(__HANDLE__, __PRESC__) ((__HANDLE__)->Instance->PSC = (__PRESC__)) + +/** + * @brief Set the TIM Counter Register value on runtime. + * @param __HANDLE__ TIM handle. + * @param __COUNTER__ specifies the Counter register new value. + * @retval None + */ +#define __HAL_TIM_SET_COUNTER(__HANDLE__, __COUNTER__) ((__HANDLE__)->Instance->CNT = (__COUNTER__)) + +/** + * @brief Get the TIM Counter Register value on runtime. + * @param __HANDLE__ TIM handle. + * @retval 16-bit or 32-bit value of the timer counter register (TIMx_CNT) + */ +#define __HAL_TIM_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNT) + +/** + * @brief Set the TIM Autoreload Register value on runtime without calling another time any Init function. + * @param __HANDLE__ TIM handle. + * @param __AUTORELOAD__ specifies the Counter register new value. + * @retval None + */ +#define __HAL_TIM_SET_AUTORELOAD(__HANDLE__, __AUTORELOAD__) \ + do{ \ + (__HANDLE__)->Instance->ARR = (__AUTORELOAD__); \ + (__HANDLE__)->Init.Period = (__AUTORELOAD__); \ + } while(0) + +/** + * @brief Get the TIM Autoreload Register value on runtime. + * @param __HANDLE__ TIM handle. + * @retval 16-bit or 32-bit value of the timer auto-reload register(TIMx_ARR) + */ +#define __HAL_TIM_GET_AUTORELOAD(__HANDLE__) ((__HANDLE__)->Instance->ARR) + +/** + * @brief Set the TIM Clock Division value on runtime without calling another time any Init function. + * @param __HANDLE__ TIM handle. + * @param __CKD__ specifies the clock division value. + * This parameter can be one of the following value: + * @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT + * @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT + * @arg TIM_CLOCKDIVISION_DIV4: tDTS=4*tCK_INT + * @retval None + */ +#define __HAL_TIM_SET_CLOCKDIVISION(__HANDLE__, __CKD__) \ + do{ \ + (__HANDLE__)->Instance->CR1 &= (~TIM_CR1_CKD); \ + (__HANDLE__)->Instance->CR1 |= (__CKD__); \ + (__HANDLE__)->Init.ClockDivision = (__CKD__); \ + } while(0) + +/** + * @brief Get the TIM Clock Division value on runtime. + * @param __HANDLE__ TIM handle. + * @retval The clock division can be one of the following values: + * @arg TIM_CLOCKDIVISION_DIV1: tDTS=tCK_INT + * @arg TIM_CLOCKDIVISION_DIV2: tDTS=2*tCK_INT + * @arg TIM_CLOCKDIVISION_DIV4: tDTS=4*tCK_INT + */ +#define __HAL_TIM_GET_CLOCKDIVISION(__HANDLE__) ((__HANDLE__)->Instance->CR1 & TIM_CR1_CKD) + +/** + * @brief Set the TIM Input Capture prescaler on runtime without calling another time HAL_TIM_IC_ConfigChannel() + * function. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param __ICPSC__ specifies the Input Capture4 prescaler new value. + * This parameter can be one of the following values: + * @arg TIM_ICPSC_DIV1: no prescaler + * @arg TIM_ICPSC_DIV2: capture is done once every 2 events + * @arg TIM_ICPSC_DIV4: capture is done once every 4 events + * @arg TIM_ICPSC_DIV8: capture is done once every 8 events + * @retval None + */ +#define __HAL_TIM_SET_ICPRESCALER(__HANDLE__, __CHANNEL__, __ICPSC__) \ + do{ \ + TIM_RESET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__)); \ + TIM_SET_ICPRESCALERVALUE((__HANDLE__), (__CHANNEL__), (__ICPSC__)); \ + } while(0) + +/** + * @brief Get the TIM Input Capture prescaler on runtime. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: get input capture 1 prescaler value + * @arg TIM_CHANNEL_2: get input capture 2 prescaler value + * @arg TIM_CHANNEL_3: get input capture 3 prescaler value + * @arg TIM_CHANNEL_4: get input capture 4 prescaler value + * @retval The input capture prescaler can be one of the following values: + * @arg TIM_ICPSC_DIV1: no prescaler + * @arg TIM_ICPSC_DIV2: capture is done once every 2 events + * @arg TIM_ICPSC_DIV4: capture is done once every 4 events + * @arg TIM_ICPSC_DIV8: capture is done once every 8 events + */ +#define __HAL_TIM_GET_ICPRESCALER(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 & TIM_CCMR1_IC1PSC) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? (((__HANDLE__)->Instance->CCMR1 & TIM_CCMR1_IC2PSC) >> 8U) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC3PSC) :\ + (((__HANDLE__)->Instance->CCMR2 & TIM_CCMR2_IC4PSC)) >> 8U) + +/** + * @brief Set the TIM Capture Compare Register value on runtime without calling another time ConfigChannel function. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param __COMPARE__ specifies the Capture Compare register new value. + * @retval None + */ +#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCR1 = (__COMPARE__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2 = (__COMPARE__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3 = (__COMPARE__)) :\ + ((__HANDLE__)->Instance->CCR4 = (__COMPARE__))) + +/** + * @brief Get the TIM Capture Compare Register value on runtime. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channel associated with the capture compare register + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: get capture/compare 1 register value + * @arg TIM_CHANNEL_2: get capture/compare 2 register value + * @arg TIM_CHANNEL_3: get capture/compare 3 register value + * @arg TIM_CHANNEL_4: get capture/compare 4 register value + * @retval 16-bit or 32-bit value of the capture/compare register (TIMx_CCRy) + */ +#define __HAL_TIM_GET_COMPARE(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCR1) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3) :\ + ((__HANDLE__)->Instance->CCR4)) + +/** + * @brief Set the TIM Output compare preload. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval None + */ +#define __HAL_TIM_ENABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1PE) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2PE) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3PE) :\ + ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4PE)) + +/** + * @brief Reset the TIM Output compare preload. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval None + */ +#define __HAL_TIM_DISABLE_OCxPRELOAD(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1PE) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2PE) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3PE) :\ + ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4PE)) + +/** + * @brief Enable fast mode for a given channel. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @note When fast mode is enabled an active edge on the trigger input acts + * like a compare match on CCx output. Delay to sample the trigger + * input and to activate CCx output is reduced to 3 clock cycles. + * @note Fast mode acts only if the channel is configured in PWM1 or PWM2 mode. + * @retval None + */ +#define __HAL_TIM_ENABLE_OCxFAST(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC1FE) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= TIM_CCMR1_OC2FE) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC3FE) :\ + ((__HANDLE__)->Instance->CCMR2 |= TIM_CCMR2_OC4FE)) + +/** + * @brief Disable fast mode for a given channel. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @note When fast mode is disabled CCx output behaves normally depending + * on counter and CCRx values even when the trigger is ON. The minimum + * delay to activate CCx output when an active edge occurs on the + * trigger input is 5 clock cycles. + * @retval None + */ +#define __HAL_TIM_DISABLE_OCxFAST(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE) :\ + ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE)) + +/** + * @brief Set the Update Request Source (URS) bit of the TIMx_CR1 register. + * @param __HANDLE__ TIM handle. + * @note When the URS bit of the TIMx_CR1 register is set, only counter + * overflow/underflow generates an update interrupt or DMA request (if + * enabled) + * @retval None + */ +#define __HAL_TIM_URS_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1|= TIM_CR1_URS) + +/** + * @brief Reset the Update Request Source (URS) bit of the TIMx_CR1 register. + * @param __HANDLE__ TIM handle. + * @note When the URS bit of the TIMx_CR1 register is reset, any of the + * following events generate an update interrupt or DMA request (if + * enabled): + * _ Counter overflow underflow + * _ Setting the UG bit + * _ Update generation through the slave mode controller + * @retval None + */ +#define __HAL_TIM_URS_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR1&=~TIM_CR1_URS) + +/** + * @brief Set the TIM Capture x input polarity on runtime. + * @param __HANDLE__ TIM handle. + * @param __CHANNEL__ TIM Channels to be configured. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param __POLARITY__ Polarity for TIx source + * @arg TIM_INPUTCHANNELPOLARITY_RISING: Rising Edge + * @arg TIM_INPUTCHANNELPOLARITY_FALLING: Falling Edge + * @arg TIM_INPUTCHANNELPOLARITY_BOTHEDGE: Rising and Falling Edge + * @retval None + */ +#define __HAL_TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \ + do{ \ + TIM_RESET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__)); \ + TIM_SET_CAPTUREPOLARITY((__HANDLE__), (__CHANNEL__), (__POLARITY__)); \ + }while(0) + +/** @brief Select the Capture/compare DMA request source. + * @param __HANDLE__ specifies the TIM Handle. + * @param __CCDMA__ specifies Capture/compare DMA request source + * This parameter can be one of the following values: + * @arg TIM_CCDMAREQUEST_CC: CCx DMA request generated on Capture/Compare event + * @arg TIM_CCDMAREQUEST_UPDATE: CCx DMA request generated on Update event + * @retval None + */ +#define __HAL_TIM_SELECT_CCDMAREQUEST(__HANDLE__, __CCDMA__) \ + MODIFY_REG((__HANDLE__)->Instance->CR2, TIM_CR2_CCDS, (__CCDMA__)) + +/** + * @} + */ +/* End of exported macros ----------------------------------------------------*/ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup TIM_Private_Constants TIM Private Constants + * @{ + */ +/* The counter of a timer instance is disabled only if all the CCx and CCxN + channels have been disabled */ +#define TIM_CCER_CCxE_MASK ((uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E)) +#define TIM_CCER_CCxNE_MASK ((uint32_t)(TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) +/** + * @} + */ +/* End of private constants --------------------------------------------------*/ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup TIM_Private_Macros TIM Private Macros + * @{ + */ +#define IS_TIM_CLEARINPUT_SOURCE(__MODE__) (((__MODE__) == TIM_CLEARINPUTSOURCE_NONE) || \ + ((__MODE__) == TIM_CLEARINPUTSOURCE_ETR)) + +#define IS_TIM_DMA_BASE(__BASE__) (((__BASE__) == TIM_DMABASE_CR1) || \ + ((__BASE__) == TIM_DMABASE_CR2) || \ + ((__BASE__) == TIM_DMABASE_SMCR) || \ + ((__BASE__) == TIM_DMABASE_DIER) || \ + ((__BASE__) == TIM_DMABASE_SR) || \ + ((__BASE__) == TIM_DMABASE_EGR) || \ + ((__BASE__) == TIM_DMABASE_CCMR1) || \ + ((__BASE__) == TIM_DMABASE_CCMR2) || \ + ((__BASE__) == TIM_DMABASE_CCER) || \ + ((__BASE__) == TIM_DMABASE_CNT) || \ + ((__BASE__) == TIM_DMABASE_PSC) || \ + ((__BASE__) == TIM_DMABASE_ARR) || \ + ((__BASE__) == TIM_DMABASE_RCR) || \ + ((__BASE__) == TIM_DMABASE_CCR1) || \ + ((__BASE__) == TIM_DMABASE_CCR2) || \ + ((__BASE__) == TIM_DMABASE_CCR3) || \ + ((__BASE__) == TIM_DMABASE_CCR4) || \ + ((__BASE__) == TIM_DMABASE_BDTR)) + +#define IS_TIM_EVENT_SOURCE(__SOURCE__) ((((__SOURCE__) & 0xFFFFFF00U) == 0x00000000U) && ((__SOURCE__) != 0x00000000U)) + +#define IS_TIM_COUNTER_MODE(__MODE__) (((__MODE__) == TIM_COUNTERMODE_UP) || \ + ((__MODE__) == TIM_COUNTERMODE_DOWN) || \ + ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED1) || \ + ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED2) || \ + ((__MODE__) == TIM_COUNTERMODE_CENTERALIGNED3)) + +#define IS_TIM_CLOCKDIVISION_DIV(__DIV__) (((__DIV__) == TIM_CLOCKDIVISION_DIV1) || \ + ((__DIV__) == TIM_CLOCKDIVISION_DIV2) || \ + ((__DIV__) == TIM_CLOCKDIVISION_DIV4)) + +#define IS_TIM_AUTORELOAD_PRELOAD(PRELOAD) (((PRELOAD) == TIM_AUTORELOAD_PRELOAD_DISABLE) || \ + ((PRELOAD) == TIM_AUTORELOAD_PRELOAD_ENABLE)) + +#define IS_TIM_FAST_STATE(__STATE__) (((__STATE__) == TIM_OCFAST_DISABLE) || \ + ((__STATE__) == TIM_OCFAST_ENABLE)) + +#define IS_TIM_OC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCPOLARITY_HIGH) || \ + ((__POLARITY__) == TIM_OCPOLARITY_LOW)) + +#define IS_TIM_OCN_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_OCNPOLARITY_HIGH) || \ + ((__POLARITY__) == TIM_OCNPOLARITY_LOW)) + +#define IS_TIM_OCIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCIDLESTATE_SET) || \ + ((__STATE__) == TIM_OCIDLESTATE_RESET)) + +#define IS_TIM_OCNIDLE_STATE(__STATE__) (((__STATE__) == TIM_OCNIDLESTATE_SET) || \ + ((__STATE__) == TIM_OCNIDLESTATE_RESET)) + +#define IS_TIM_ENCODERINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_RISING) || \ + ((__POLARITY__) == TIM_ENCODERINPUTPOLARITY_FALLING)) + +#define IS_TIM_IC_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_ICPOLARITY_RISING) || \ + ((__POLARITY__) == TIM_ICPOLARITY_FALLING) || \ + ((__POLARITY__) == TIM_ICPOLARITY_BOTHEDGE)) + +#define IS_TIM_IC_SELECTION(__SELECTION__) (((__SELECTION__) == TIM_ICSELECTION_DIRECTTI) || \ + ((__SELECTION__) == TIM_ICSELECTION_INDIRECTTI) || \ + ((__SELECTION__) == TIM_ICSELECTION_TRC)) + +#define IS_TIM_IC_PRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_ICPSC_DIV1) || \ + ((__PRESCALER__) == TIM_ICPSC_DIV2) || \ + ((__PRESCALER__) == TIM_ICPSC_DIV4) || \ + ((__PRESCALER__) == TIM_ICPSC_DIV8)) + +#define IS_TIM_OPM_MODE(__MODE__) (((__MODE__) == TIM_OPMODE_SINGLE) || \ + ((__MODE__) == TIM_OPMODE_REPETITIVE)) + +#define IS_TIM_ENCODER_MODE(__MODE__) (((__MODE__) == TIM_ENCODERMODE_TI1) || \ + ((__MODE__) == TIM_ENCODERMODE_TI2) || \ + ((__MODE__) == TIM_ENCODERMODE_TI12)) + +#define IS_TIM_DMA_SOURCE(__SOURCE__) ((((__SOURCE__) & 0xFFFF80FFU) == 0x00000000U) && ((__SOURCE__) != 0x00000000U)) + +#define IS_TIM_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || \ + ((__CHANNEL__) == TIM_CHANNEL_2) || \ + ((__CHANNEL__) == TIM_CHANNEL_3) || \ + ((__CHANNEL__) == TIM_CHANNEL_4) || \ + ((__CHANNEL__) == TIM_CHANNEL_ALL)) + +#define IS_TIM_OPM_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || \ + ((__CHANNEL__) == TIM_CHANNEL_2)) + +#define IS_TIM_PERIOD(__PERIOD__) (((__PERIOD__) > 0U) && ((__PERIOD__) <= 0xFFFFU)) + +#define IS_TIM_COMPLEMENTARY_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || \ + ((__CHANNEL__) == TIM_CHANNEL_2) || \ + ((__CHANNEL__) == TIM_CHANNEL_3)) + +#define IS_TIM_CLOCKSOURCE(__CLOCK__) (((__CLOCK__) == TIM_CLOCKSOURCE_INTERNAL) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE1) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_ETRMODE2) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_TI1ED) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_TI1) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_TI2) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_ITR0) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_ITR1) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_ITR2) || \ + ((__CLOCK__) == TIM_CLOCKSOURCE_ITR3)) + +#define IS_TIM_CLOCKPOLARITY(__POLARITY__) (((__POLARITY__) == TIM_CLOCKPOLARITY_INVERTED) || \ + ((__POLARITY__) == TIM_CLOCKPOLARITY_NONINVERTED) || \ + ((__POLARITY__) == TIM_CLOCKPOLARITY_RISING) || \ + ((__POLARITY__) == TIM_CLOCKPOLARITY_FALLING) || \ + ((__POLARITY__) == TIM_CLOCKPOLARITY_BOTHEDGE)) + +#define IS_TIM_CLOCKPRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV1) || \ + ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV2) || \ + ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV4) || \ + ((__PRESCALER__) == TIM_CLOCKPRESCALER_DIV8)) + +#define IS_TIM_CLOCKFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_CLEARINPUT_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_CLEARINPUTPOLARITY_INVERTED) || \ + ((__POLARITY__) == TIM_CLEARINPUTPOLARITY_NONINVERTED)) + +#define IS_TIM_CLEARINPUT_PRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV1) || \ + ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV2) || \ + ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV4) || \ + ((__PRESCALER__) == TIM_CLEARINPUTPRESCALER_DIV8)) + +#define IS_TIM_CLEARINPUT_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_OSSR_STATE(__STATE__) (((__STATE__) == TIM_OSSR_ENABLE) || \ + ((__STATE__) == TIM_OSSR_DISABLE)) + +#define IS_TIM_OSSI_STATE(__STATE__) (((__STATE__) == TIM_OSSI_ENABLE) || \ + ((__STATE__) == TIM_OSSI_DISABLE)) + +#define IS_TIM_LOCK_LEVEL(__LEVEL__) (((__LEVEL__) == TIM_LOCKLEVEL_OFF) || \ + ((__LEVEL__) == TIM_LOCKLEVEL_1) || \ + ((__LEVEL__) == TIM_LOCKLEVEL_2) || \ + ((__LEVEL__) == TIM_LOCKLEVEL_3)) + +#define IS_TIM_BREAK_FILTER(__BRKFILTER__) ((__BRKFILTER__) <= 0xFUL) + +#define IS_TIM_BREAK_STATE(__STATE__) (((__STATE__) == TIM_BREAK_ENABLE) || \ + ((__STATE__) == TIM_BREAK_DISABLE)) + +#define IS_TIM_BREAK_POLARITY(__POLARITY__) (((__POLARITY__) == TIM_BREAKPOLARITY_LOW) || \ + ((__POLARITY__) == TIM_BREAKPOLARITY_HIGH)) + +#define IS_TIM_AUTOMATIC_OUTPUT_STATE(__STATE__) (((__STATE__) == TIM_AUTOMATICOUTPUT_ENABLE) || \ + ((__STATE__) == TIM_AUTOMATICOUTPUT_DISABLE)) + +#define IS_TIM_TRGO_SOURCE(__SOURCE__) (((__SOURCE__) == TIM_TRGO_RESET) || \ + ((__SOURCE__) == TIM_TRGO_ENABLE) || \ + ((__SOURCE__) == TIM_TRGO_UPDATE) || \ + ((__SOURCE__) == TIM_TRGO_OC1) || \ + ((__SOURCE__) == TIM_TRGO_OC1REF) || \ + ((__SOURCE__) == TIM_TRGO_OC2REF) || \ + ((__SOURCE__) == TIM_TRGO_OC3REF) || \ + ((__SOURCE__) == TIM_TRGO_OC4REF)) + +#define IS_TIM_MSM_STATE(__STATE__) (((__STATE__) == TIM_MASTERSLAVEMODE_ENABLE) || \ + ((__STATE__) == TIM_MASTERSLAVEMODE_DISABLE)) + +#define IS_TIM_SLAVE_MODE(__MODE__) (((__MODE__) == TIM_SLAVEMODE_DISABLE) || \ + ((__MODE__) == TIM_SLAVEMODE_RESET) || \ + ((__MODE__) == TIM_SLAVEMODE_GATED) || \ + ((__MODE__) == TIM_SLAVEMODE_TRIGGER) || \ + ((__MODE__) == TIM_SLAVEMODE_EXTERNAL1)) + +#define IS_TIM_PWM_MODE(__MODE__) (((__MODE__) == TIM_OCMODE_PWM1) || \ + ((__MODE__) == TIM_OCMODE_PWM2)) + +#define IS_TIM_OC_MODE(__MODE__) (((__MODE__) == TIM_OCMODE_TIMING) || \ + ((__MODE__) == TIM_OCMODE_ACTIVE) || \ + ((__MODE__) == TIM_OCMODE_INACTIVE) || \ + ((__MODE__) == TIM_OCMODE_TOGGLE) || \ + ((__MODE__) == TIM_OCMODE_FORCED_ACTIVE) || \ + ((__MODE__) == TIM_OCMODE_FORCED_INACTIVE)) + +#define IS_TIM_TRIGGER_SELECTION(__SELECTION__) (((__SELECTION__) == TIM_TS_ITR0) || \ + ((__SELECTION__) == TIM_TS_ITR1) || \ + ((__SELECTION__) == TIM_TS_ITR2) || \ + ((__SELECTION__) == TIM_TS_ITR3) || \ + ((__SELECTION__) == TIM_TS_TI1F_ED) || \ + ((__SELECTION__) == TIM_TS_TI1FP1) || \ + ((__SELECTION__) == TIM_TS_TI2FP2) || \ + ((__SELECTION__) == TIM_TS_ETRF)) + +#define IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(__SELECTION__) (((__SELECTION__) == TIM_TS_ITR0) || \ + ((__SELECTION__) == TIM_TS_ITR1) || \ + ((__SELECTION__) == TIM_TS_ITR2) || \ + ((__SELECTION__) == TIM_TS_ITR3) || \ + ((__SELECTION__) == TIM_TS_NONE)) + +#define IS_TIM_TRIGGERPOLARITY(__POLARITY__) (((__POLARITY__) == TIM_TRIGGERPOLARITY_INVERTED ) || \ + ((__POLARITY__) == TIM_TRIGGERPOLARITY_NONINVERTED) || \ + ((__POLARITY__) == TIM_TRIGGERPOLARITY_RISING ) || \ + ((__POLARITY__) == TIM_TRIGGERPOLARITY_FALLING ) || \ + ((__POLARITY__) == TIM_TRIGGERPOLARITY_BOTHEDGE )) + +#define IS_TIM_TRIGGERPRESCALER(__PRESCALER__) (((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV1) || \ + ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV2) || \ + ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV4) || \ + ((__PRESCALER__) == TIM_TRIGGERPRESCALER_DIV8)) + +#define IS_TIM_TRIGGERFILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_TI1SELECTION(__TI1SELECTION__) (((__TI1SELECTION__) == TIM_TI1SELECTION_CH1) || \ + ((__TI1SELECTION__) == TIM_TI1SELECTION_XORCOMBINATION)) + +#define IS_TIM_DMA_LENGTH(__LENGTH__) (((__LENGTH__) == TIM_DMABURSTLENGTH_1TRANSFER) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_2TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_3TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_4TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_5TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_6TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_7TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_8TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_9TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_10TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_11TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_12TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_13TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_14TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_15TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_16TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_17TRANSFERS) || \ + ((__LENGTH__) == TIM_DMABURSTLENGTH_18TRANSFERS)) + +#define IS_TIM_DMA_DATA_LENGTH(LENGTH) (((LENGTH) >= 0x1U) && ((LENGTH) < 0x10000U)) + +#define IS_TIM_IC_FILTER(__ICFILTER__) ((__ICFILTER__) <= 0xFU) + +#define IS_TIM_DEADTIME(__DEADTIME__) ((__DEADTIME__) <= 0xFFU) + +#define IS_TIM_SLAVEMODE_TRIGGER_ENABLED(__TRIGGER__) ((__TRIGGER__) == TIM_SLAVEMODE_TRIGGER) + +#define TIM_SET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__, __ICPSC__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 |= (__ICPSC__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 |= ((__ICPSC__) << 8U)) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 |= (__ICPSC__)) :\ + ((__HANDLE__)->Instance->CCMR2 |= ((__ICPSC__) << 8U))) + +#define TIM_RESET_ICPRESCALERVALUE(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC) :\ + ((__HANDLE__)->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC)) + +#define TIM_SET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__, __POLARITY__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCER |= (__POLARITY__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 4U)) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER |= ((__POLARITY__) << 8U)) :\ + ((__HANDLE__)->Instance->CCER |= (((__POLARITY__) << 12U)))) + +#define TIM_RESET_CAPTUREPOLARITY(__HANDLE__, __CHANNEL__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP)) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP)) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC3P)) :\ + ((__HANDLE__)->Instance->CCER &= ~(TIM_CCER_CC4P))) + +#define TIM_CHANNEL_STATE_GET(__HANDLE__, __CHANNEL__)\ + (((__CHANNEL__) == TIM_CHANNEL_1) ? (__HANDLE__)->ChannelState[0] :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelState[1] :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelState[2] :\ + (__HANDLE__)->ChannelState[3]) + +#define TIM_CHANNEL_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__)) :\ + ((__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__))) + +#define TIM_CHANNEL_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) do { \ + (__HANDLE__)->ChannelState[0] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelState[1] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelState[2] = (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelState[3] = (__CHANNEL_STATE__); \ + } while(0) + +#define TIM_CHANNEL_N_STATE_GET(__HANDLE__, __CHANNEL__)\ + (((__CHANNEL__) == TIM_CHANNEL_1) ? (__HANDLE__)->ChannelNState[0] :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? (__HANDLE__)->ChannelNState[1] :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? (__HANDLE__)->ChannelNState[2] :\ + (__HANDLE__)->ChannelNState[3]) + +#define TIM_CHANNEL_N_STATE_SET(__HANDLE__, __CHANNEL__, __CHANNEL_STATE__) \ + (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->ChannelNState[0] = (__CHANNEL_STATE__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->ChannelNState[1] = (__CHANNEL_STATE__)) :\ + ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->ChannelNState[2] = (__CHANNEL_STATE__)) :\ + ((__HANDLE__)->ChannelNState[3] = (__CHANNEL_STATE__))) + +#define TIM_CHANNEL_N_STATE_SET_ALL(__HANDLE__, __CHANNEL_STATE__) do { \ + (__HANDLE__)->ChannelNState[0] = \ + (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelNState[1] = \ + (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelNState[2] = \ + (__CHANNEL_STATE__); \ + (__HANDLE__)->ChannelNState[3] = \ + (__CHANNEL_STATE__); \ + } while(0) + +/** + * @} + */ +/* End of private macros -----------------------------------------------------*/ + +/* Include TIM HAL Extended module */ +#include "stm32f1xx_hal_tim_ex.h" + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup TIM_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @addtogroup TIM_Exported_Functions_Group1 TIM Time Base functions + * @brief Time Base functions + * @{ + */ +/* Time Base functions ********************************************************/ +HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim); +void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim); +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length); +HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim); +/** + * @} + */ + +/** @addtogroup TIM_Exported_Functions_Group2 TIM Output Compare functions + * @brief TIM Output Compare functions + * @{ + */ +/* Timer Output Compare functions *********************************************/ +HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim); +void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim); +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length); +HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @addtogroup TIM_Exported_Functions_Group3 TIM PWM functions + * @brief TIM PWM functions + * @{ + */ +/* Timer PWM functions ********************************************************/ +HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim); +void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim); +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length); +HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @addtogroup TIM_Exported_Functions_Group4 TIM Input Capture functions + * @brief TIM Input Capture functions + * @{ + */ +/* Timer Input Capture functions **********************************************/ +HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim); +void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim); +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length); +HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @addtogroup TIM_Exported_Functions_Group5 TIM One Pulse functions + * @brief TIM One Pulse functions + * @{ + */ +/* Timer One Pulse functions **************************************************/ +HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode); +HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim); +void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim); +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +/** + * @} + */ + +/** @addtogroup TIM_Exported_Functions_Group6 TIM Encoder functions + * @brief TIM Encoder functions + * @{ + */ +/* Timer Encoder functions ****************************************************/ +HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig); +HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim); +void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim); +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, + uint32_t *pData2, uint16_t Length); +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @addtogroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief IRQ handler management + * @{ + */ +/* Interrupt Handler functions ***********************************************/ +void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim); +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions + * @brief Peripheral Control functions + * @{ + */ +/* Control functions *********************************************************/ +HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_OC_InitTypeDef *sConfig, + uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_OC_InitTypeDef *sConfig, + uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, + uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, + uint32_t OutputChannel, uint32_t InputChannel); +HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, + const TIM_ClearInputConfigTypeDef *sClearInputConfig, + uint32_t Channel); +HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig); +HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection); +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig); +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig); +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, + uint32_t BurstLength); +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength); +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc); +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength); +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength); +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc); +HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource); +uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions + * @{ + */ +/* Callback in non blocking modes (Interrupt and DMA) *************************/ +void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim); +void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim); + +/* Callbacks Register/UnRegister functions ***********************************/ +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, + pTIM_CallbackTypeDef pCallback); +HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions + * @brief Peripheral State functions + * @{ + */ +/* Peripheral State functions ************************************************/ +HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim); +HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim); +HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim); +HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim); +HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim); +HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim); + +/* Peripheral Channel state functions ************************************************/ +HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim); +HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim); +/** + * @} + */ + +/** + * @} + */ +/* End of exported functions -------------------------------------------------*/ + +/* Private functions----------------------------------------------------------*/ +/** @defgroup TIM_Private_Functions TIM Private Functions + * @{ + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure); +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, uint32_t TIM_ICFilter); +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); + +void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma); +void TIM_DMAError(DMA_HandleTypeDef *hdma); +void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma); +void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma); +void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +void TIM_ResetCallback(TIM_HandleTypeDef *htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ +/* End of private functions --------------------------------------------------*/ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* STM32F1xx_HAL_TIM_H */ diff --git a/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h new file mode 100644 index 0000000..3edc9d3 --- /dev/null +++ b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h @@ -0,0 +1,261 @@ +/** + ****************************************************************************** + * @file stm32f1xx_hal_tim_ex.h + * @author MCD Application Team + * @brief Header file of TIM HAL Extended module. + ****************************************************************************** + * @attention + * + * Copyright (c) 2016 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef STM32F1xx_HAL_TIM_EX_H +#define STM32F1xx_HAL_TIM_EX_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f1xx_hal_def.h" + +/** @addtogroup STM32F1xx_HAL_Driver + * @{ + */ + +/** @addtogroup TIMEx + * @{ + */ + +/* Exported types ------------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Types TIM Extended Exported Types + * @{ + */ + +/** + * @brief TIM Hall sensor Configuration Structure definition + */ + +typedef struct +{ + uint32_t IC1Polarity; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_Input_Capture_Polarity */ + + uint32_t IC1Prescaler; /*!< Specifies the Input Capture Prescaler. + This parameter can be a value of @ref TIM_Input_Capture_Prescaler */ + + uint32_t IC1Filter; /*!< Specifies the input capture filter. + This parameter can be a number between Min_Data = 0x0 and Max_Data = 0xF */ + + uint32_t Commutation_Delay; /*!< Specifies the pulse value to be loaded into the Capture Compare Register. + This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF */ +} TIM_HallSensor_InitTypeDef; +/** + * @} + */ +/* End of exported types -----------------------------------------------------*/ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Constants TIM Extended Exported Constants + * @{ + */ + +/** @defgroup TIMEx_Remap TIM Extended Remapping + * @{ + */ +/** + * @} + */ + +/** + * @} + */ +/* End of exported constants -------------------------------------------------*/ + +/* Exported macro ------------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Macros TIM Extended Exported Macros + * @{ + */ + +/** + * @} + */ +/* End of exported macro -----------------------------------------------------*/ + +/* Private macro -------------------------------------------------------------*/ +/** @defgroup TIMEx_Private_Macros TIM Extended Private Macros + * @{ + */ + +/** + * @} + */ +/* End of private macro ------------------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup TIMEx_Exported_Functions TIM Extended Exported Functions + * @{ + */ + +/** @addtogroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions + * @brief Timer Hall Sensor functions + * @{ + */ +/* Timer Hall Sensor functions **********************************************/ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig); +HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim); + +void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim); +void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim); + +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim); +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim); +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length); +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim); +/** + * @} + */ + +/** @addtogroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions + * @{ + */ +/* Timer Complementary Output Compare functions *****************************/ +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); + +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); + +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length); +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @addtogroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions + * @brief Timer Complementary PWM functions + * @{ + */ +/* Timer Complementary PWM functions ****************************************/ +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel); + +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel); +/* Non-Blocking mode: DMA */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length); +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel); +/** + * @} + */ + +/** @addtogroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions + * @{ + */ +/* Timer Complementary One Pulse functions **********************************/ +/* Blocking mode: Polling */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel); + +/* Non-Blocking mode: Interrupt */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel); +/** + * @} + */ + +/** @addtogroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions + * @brief Peripheral Control functions + * @{ + */ +/* Extended Control functions ************************************************/ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource); +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource); +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource); +HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, + const TIM_MasterConfigTypeDef *sMasterConfig); +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, + const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig); +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap); +/** + * @} + */ + +/** @addtogroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions + * @brief Extended Callbacks functions + * @{ + */ +/* Extended Callback **********************************************************/ +void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim); +void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim); +void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim); +/** + * @} + */ + +/** @addtogroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions + * @brief Extended Peripheral State functions + * @{ + */ +/* Extended Peripheral State functions ***************************************/ +HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim); +HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN); +/** + * @} + */ + +/** + * @} + */ +/* End of exported functions -------------------------------------------------*/ + +/* Private functions----------------------------------------------------------*/ +/** @addtogroup TIMEx_Private_Functions TIM Extended Private Functions + * @{ + */ +void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma); +void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/* End of private functions --------------------------------------------------*/ + +/** + * @} + */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + + +#endif /* STM32F1xx_HAL_TIM_EX_H */ diff --git a/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_tim.h b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_tim.h new file mode 100644 index 0000000..d54a00e --- /dev/null +++ b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_tim.h @@ -0,0 +1,3901 @@ +/** + ****************************************************************************** + * @file stm32f1xx_ll_tim.h + * @author MCD Application Team + * @brief Header file of TIM LL module. + ****************************************************************************** + * @attention + * + * Copyright (c) 2016 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + */ + +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __STM32F1xx_LL_TIM_H +#define __STM32F1xx_LL_TIM_H + +#ifdef __cplusplus +extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f1xx.h" + +/** @addtogroup STM32F1xx_LL_Driver + * @{ + */ + +#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) + +/** @defgroup TIM_LL TIM + * @{ + */ + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @defgroup TIM_LL_Private_Variables TIM Private Variables + * @{ + */ +static const uint8_t OFFSET_TAB_CCMRx[] = +{ + 0x00U, /* 0: TIMx_CH1 */ + 0x00U, /* 1: TIMx_CH1N */ + 0x00U, /* 2: TIMx_CH2 */ + 0x00U, /* 3: TIMx_CH2N */ + 0x04U, /* 4: TIMx_CH3 */ + 0x04U, /* 5: TIMx_CH3N */ + 0x04U /* 6: TIMx_CH4 */ +}; + +static const uint8_t SHIFT_TAB_OCxx[] = +{ + 0U, /* 0: OC1M, OC1FE, OC1PE */ + 0U, /* 1: - NA */ + 8U, /* 2: OC2M, OC2FE, OC2PE */ + 0U, /* 3: - NA */ + 0U, /* 4: OC3M, OC3FE, OC3PE */ + 0U, /* 5: - NA */ + 8U /* 6: OC4M, OC4FE, OC4PE */ +}; + +static const uint8_t SHIFT_TAB_ICxx[] = +{ + 0U, /* 0: CC1S, IC1PSC, IC1F */ + 0U, /* 1: - NA */ + 8U, /* 2: CC2S, IC2PSC, IC2F */ + 0U, /* 3: - NA */ + 0U, /* 4: CC3S, IC3PSC, IC3F */ + 0U, /* 5: - NA */ + 8U /* 6: CC4S, IC4PSC, IC4F */ +}; + +static const uint8_t SHIFT_TAB_CCxP[] = +{ + 0U, /* 0: CC1P */ + 2U, /* 1: CC1NP */ + 4U, /* 2: CC2P */ + 6U, /* 3: CC2NP */ + 8U, /* 4: CC3P */ + 10U, /* 5: CC3NP */ + 12U /* 6: CC4P */ +}; + +static const uint8_t SHIFT_TAB_OISx[] = +{ + 0U, /* 0: OIS1 */ + 1U, /* 1: OIS1N */ + 2U, /* 2: OIS2 */ + 3U, /* 3: OIS2N */ + 4U, /* 4: OIS3 */ + 5U, /* 5: OIS3N */ + 6U /* 6: OIS4 */ +}; +/** + * @} + */ + +/* Private constants ---------------------------------------------------------*/ +/** @defgroup TIM_LL_Private_Constants TIM Private Constants + * @{ + */ + + + +/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */ +#define DT_DELAY_1 ((uint8_t)0x7F) +#define DT_DELAY_2 ((uint8_t)0x3F) +#define DT_DELAY_3 ((uint8_t)0x1F) +#define DT_DELAY_4 ((uint8_t)0x1F) + +/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */ +#define DT_RANGE_1 ((uint8_t)0x00) +#define DT_RANGE_2 ((uint8_t)0x80) +#define DT_RANGE_3 ((uint8_t)0xC0) +#define DT_RANGE_4 ((uint8_t)0xE0) + + +/** + * @} + */ + +/* Private macros ------------------------------------------------------------*/ +/** @defgroup TIM_LL_Private_Macros TIM Private Macros + * @{ + */ +/** @brief Convert channel id into channel index. + * @param __CHANNEL__ This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval none + */ +#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \ + (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\ + ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\ + ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\ + ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\ + ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\ + ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U : 6U) + +/** @brief Calculate the deadtime sampling period(in ps). + * @param __TIMCLK__ timer input clock frequency (in Hz). + * @param __CKD__ This parameter can be one of the following values: + * @arg @ref LL_TIM_CLOCKDIVISION_DIV1 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV2 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV4 + * @retval none + */ +#define TIM_CALC_DTS(__TIMCLK__, __CKD__) \ + (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__)) : \ + ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \ + ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U))) +/** + * @} + */ + + +/* Exported types ------------------------------------------------------------*/ +#if defined(USE_FULL_LL_DRIVER) +/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure + * @{ + */ + +/** + * @brief TIM Time Base configuration structure definition. + */ +typedef struct +{ + uint16_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock. + This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetPrescaler().*/ + + uint32_t CounterMode; /*!< Specifies the counter mode. + This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetCounterMode().*/ + + uint32_t Autoreload; /*!< Specifies the auto reload value to be loaded into the active + Auto-Reload Register at the next update event. + This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF. + Some timer instances may support 32 bits counters. In that case this parameter must + be a number between 0x0000 and 0xFFFFFFFF. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetAutoReload().*/ + + uint32_t ClockDivision; /*!< Specifies the clock division. + This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetClockDivision().*/ + + uint32_t RepetitionCounter; /*!< Specifies the repetition counter value. Each time the RCR downcounter + reaches zero, an update event is generated and counting restarts + from the RCR value (N). + This means in PWM mode that (N+1) corresponds to: + - the number of PWM periods in edge-aligned mode + - the number of half PWM period in center-aligned mode + GP timers: this parameter must be a number between Min_Data = 0x00 and + Max_Data = 0xFF. + Advanced timers: this parameter must be a number between Min_Data = 0x0000 and + Max_Data = 0xFFFF. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetRepetitionCounter().*/ +} LL_TIM_InitTypeDef; + +/** + * @brief TIM Output Compare configuration structure definition. + */ +typedef struct +{ + uint32_t OCMode; /*!< Specifies the output mode. + This parameter can be a value of @ref TIM_LL_EC_OCMODE. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetMode().*/ + + uint32_t OCState; /*!< Specifies the TIM Output Compare state. + This parameter can be a value of @ref TIM_LL_EC_OCSTATE. + + This feature can be modified afterwards using unitary functions + @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/ + + uint32_t OCNState; /*!< Specifies the TIM complementary Output Compare state. + This parameter can be a value of @ref TIM_LL_EC_OCSTATE. + + This feature can be modified afterwards using unitary functions + @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/ + + uint32_t CompareValue; /*!< Specifies the Compare value to be loaded into the Capture Compare Register. + This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF. + + This feature can be modified afterwards using unitary function + LL_TIM_OC_SetCompareCHx (x=1..6).*/ + + uint32_t OCPolarity; /*!< Specifies the output polarity. + This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetPolarity().*/ + + uint32_t OCNPolarity; /*!< Specifies the complementary output polarity. + This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetPolarity().*/ + + + uint32_t OCIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. + This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetIdleState().*/ + + uint32_t OCNIdleState; /*!< Specifies the TIM Output Compare pin state during Idle state. + This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetIdleState().*/ +} LL_TIM_OC_InitTypeDef; + +/** + * @brief TIM Input Capture configuration structure definition. + */ + +typedef struct +{ + + uint32_t ICPolarity; /*!< Specifies the active edge of the input signal. + This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPolarity().*/ + + uint32_t ICActiveInput; /*!< Specifies the input. + This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetActiveInput().*/ + + uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler. + This parameter can be a value of @ref TIM_LL_EC_ICPSC. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPrescaler().*/ + + uint32_t ICFilter; /*!< Specifies the input capture filter. + This parameter can be a value of @ref TIM_LL_EC_IC_FILTER. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetFilter().*/ +} LL_TIM_IC_InitTypeDef; + + +/** + * @brief TIM Encoder interface configuration structure definition. + */ +typedef struct +{ + uint32_t EncoderMode; /*!< Specifies the encoder resolution (x2 or x4). + This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetEncoderMode().*/ + + uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input. + This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPolarity().*/ + + uint32_t IC1ActiveInput; /*!< Specifies the TI1 input source + This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetActiveInput().*/ + + uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value. + This parameter can be a value of @ref TIM_LL_EC_ICPSC. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPrescaler().*/ + + uint32_t IC1Filter; /*!< Specifies the TI1 input filter. + This parameter can be a value of @ref TIM_LL_EC_IC_FILTER. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetFilter().*/ + + uint32_t IC2Polarity; /*!< Specifies the active edge of TI2 input. + This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPolarity().*/ + + uint32_t IC2ActiveInput; /*!< Specifies the TI2 input source + This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetActiveInput().*/ + + uint32_t IC2Prescaler; /*!< Specifies the TI2 input prescaler value. + This parameter can be a value of @ref TIM_LL_EC_ICPSC. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPrescaler().*/ + + uint32_t IC2Filter; /*!< Specifies the TI2 input filter. + This parameter can be a value of @ref TIM_LL_EC_IC_FILTER. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetFilter().*/ + +} LL_TIM_ENCODER_InitTypeDef; + +/** + * @brief TIM Hall sensor interface configuration structure definition. + */ +typedef struct +{ + + uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input. + This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPolarity().*/ + + uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value. + Prescaler must be set to get a maximum counter period longer than the + time interval between 2 consecutive changes on the Hall inputs. + This parameter can be a value of @ref TIM_LL_EC_ICPSC. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetPrescaler().*/ + + uint32_t IC1Filter; /*!< Specifies the TI1 input filter. + This parameter can be a value of + @ref TIM_LL_EC_IC_FILTER. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_IC_SetFilter().*/ + + uint32_t CommutationDelay; /*!< Specifies the compare value to be loaded into the Capture Compare Register. + A positive pulse (TRGO event) is generated with a programmable delay every time + a change occurs on the Hall inputs. + This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetCompareCH2().*/ +} LL_TIM_HALLSENSOR_InitTypeDef; + +/** + * @brief BDTR (Break and Dead Time) structure definition + */ +typedef struct +{ + uint32_t OSSRState; /*!< Specifies the Off-State selection used in Run mode. + This parameter can be a value of @ref TIM_LL_EC_OSSR + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetOffStates() + + @note This bit-field cannot be modified as long as LOCK level 2 has been + programmed. */ + + uint32_t OSSIState; /*!< Specifies the Off-State used in Idle state. + This parameter can be a value of @ref TIM_LL_EC_OSSI + + This feature can be modified afterwards using unitary function + @ref LL_TIM_SetOffStates() + + @note This bit-field cannot be modified as long as LOCK level 2 has been + programmed. */ + + uint32_t LockLevel; /*!< Specifies the LOCK level parameters. + This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL + + @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR + register has been written, their content is frozen until the next reset.*/ + + uint8_t DeadTime; /*!< Specifies the delay time between the switching-off and the + switching-on of the outputs. + This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF. + + This feature can be modified afterwards using unitary function + @ref LL_TIM_OC_SetDeadTime() + + @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been + programmed. */ + + uint16_t BreakState; /*!< Specifies whether the TIM Break input is enabled or not. + This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE + + This feature can be modified afterwards using unitary functions + @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK() + + @note This bit-field can not be modified as long as LOCK level 1 has been + programmed. */ + + uint32_t BreakPolarity; /*!< Specifies the TIM Break Input pin polarity. + This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY + + This feature can be modified afterwards using unitary function + @ref LL_TIM_ConfigBRK() + + @note This bit-field can not be modified as long as LOCK level 1 has been + programmed. */ + + uint32_t AutomaticOutput; /*!< Specifies whether the TIM Automatic Output feature is enabled or not. + This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE + + This feature can be modified afterwards using unitary functions + @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput() + + @note This bit-field can not be modified as long as LOCK level 1 has been + programmed. */ +} LL_TIM_BDTR_InitTypeDef; + +/** + * @} + */ +#endif /* USE_FULL_LL_DRIVER */ + +/* Exported constants --------------------------------------------------------*/ +/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants + * @{ + */ + +/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines + * @brief Flags defines which can be used with LL_TIM_ReadReg function. + * @{ + */ +#define LL_TIM_SR_UIF TIM_SR_UIF /*!< Update interrupt flag */ +#define LL_TIM_SR_CC1IF TIM_SR_CC1IF /*!< Capture/compare 1 interrupt flag */ +#define LL_TIM_SR_CC2IF TIM_SR_CC2IF /*!< Capture/compare 2 interrupt flag */ +#define LL_TIM_SR_CC3IF TIM_SR_CC3IF /*!< Capture/compare 3 interrupt flag */ +#define LL_TIM_SR_CC4IF TIM_SR_CC4IF /*!< Capture/compare 4 interrupt flag */ +#define LL_TIM_SR_COMIF TIM_SR_COMIF /*!< COM interrupt flag */ +#define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */ +#define LL_TIM_SR_BIF TIM_SR_BIF /*!< Break interrupt flag */ +#define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */ +#define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */ +#define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */ +#define LL_TIM_SR_CC4OF TIM_SR_CC4OF /*!< Capture/Compare 4 overcapture flag */ +/** + * @} + */ + +#if defined(USE_FULL_LL_DRIVER) +/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable + * @{ + */ +#define LL_TIM_BREAK_DISABLE 0x00000000U /*!< Break function disabled */ +#define LL_TIM_BREAK_ENABLE TIM_BDTR_BKE /*!< Break function enabled */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable + * @{ + */ +#define LL_TIM_AUTOMATICOUTPUT_DISABLE 0x00000000U /*!< MOE can be set only by software */ +#define LL_TIM_AUTOMATICOUTPUT_ENABLE TIM_BDTR_AOE /*!< MOE can be set by software or automatically at the next update event */ +/** + * @} + */ +#endif /* USE_FULL_LL_DRIVER */ + +/** @defgroup TIM_LL_EC_IT IT Defines + * @brief IT defines which can be used with LL_TIM_ReadReg and LL_TIM_WriteReg functions. + * @{ + */ +#define LL_TIM_DIER_UIE TIM_DIER_UIE /*!< Update interrupt enable */ +#define LL_TIM_DIER_CC1IE TIM_DIER_CC1IE /*!< Capture/compare 1 interrupt enable */ +#define LL_TIM_DIER_CC2IE TIM_DIER_CC2IE /*!< Capture/compare 2 interrupt enable */ +#define LL_TIM_DIER_CC3IE TIM_DIER_CC3IE /*!< Capture/compare 3 interrupt enable */ +#define LL_TIM_DIER_CC4IE TIM_DIER_CC4IE /*!< Capture/compare 4 interrupt enable */ +#define LL_TIM_DIER_COMIE TIM_DIER_COMIE /*!< COM interrupt enable */ +#define LL_TIM_DIER_TIE TIM_DIER_TIE /*!< Trigger interrupt enable */ +#define LL_TIM_DIER_BIE TIM_DIER_BIE /*!< Break interrupt enable */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source + * @{ + */ +#define LL_TIM_UPDATESOURCE_REGULAR 0x00000000U /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */ +#define LL_TIM_UPDATESOURCE_COUNTER TIM_CR1_URS /*!< Only counter overflow/underflow generates an update request */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode + * @{ + */ +#define LL_TIM_ONEPULSEMODE_SINGLE TIM_CR1_OPM /*!< Counter stops counting at the next update event */ +#define LL_TIM_ONEPULSEMODE_REPETITIVE 0x00000000U /*!< Counter is not stopped at update event */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode + * @{ + */ +#define LL_TIM_COUNTERMODE_UP 0x00000000U /*!< Counter used as upcounter */ +#define LL_TIM_COUNTERMODE_DOWN TIM_CR1_DIR /*!< Counter used as downcounter */ +#define LL_TIM_COUNTERMODE_CENTER_DOWN TIM_CR1_CMS_0 /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting down. */ +#define LL_TIM_COUNTERMODE_CENTER_UP TIM_CR1_CMS_1 /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up */ +#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN TIM_CR1_CMS /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels are set only when the counter is counting up or down. */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division + * @{ + */ +#define LL_TIM_CLOCKDIVISION_DIV1 0x00000000U /*!< tDTS=tCK_INT */ +#define LL_TIM_CLOCKDIVISION_DIV2 TIM_CR1_CKD_0 /*!< tDTS=2*tCK_INT */ +#define LL_TIM_CLOCKDIVISION_DIV4 TIM_CR1_CKD_1 /*!< tDTS=4*tCK_INT */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction + * @{ + */ +#define LL_TIM_COUNTERDIRECTION_UP 0x00000000U /*!< Timer counter counts up */ +#define LL_TIM_COUNTERDIRECTION_DOWN TIM_CR1_DIR /*!< Timer counter counts down */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare Update Source + * @{ + */ +#define LL_TIM_CCUPDATESOURCE_COMG_ONLY 0x00000000U /*!< Capture/compare control bits are updated by setting the COMG bit only */ +#define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI TIM_CR2_CCUS /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request + * @{ + */ +#define LL_TIM_CCDMAREQUEST_CC 0x00000000U /*!< CCx DMA request sent when CCx event occurs */ +#define LL_TIM_CCDMAREQUEST_UPDATE TIM_CR2_CCDS /*!< CCx DMA requests sent when update event occurs */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level + * @{ + */ +#define LL_TIM_LOCKLEVEL_OFF 0x00000000U /*!< LOCK OFF - No bit is write protected */ +#define LL_TIM_LOCKLEVEL_1 TIM_BDTR_LOCK_0 /*!< LOCK Level 1 */ +#define LL_TIM_LOCKLEVEL_2 TIM_BDTR_LOCK_1 /*!< LOCK Level 2 */ +#define LL_TIM_LOCKLEVEL_3 TIM_BDTR_LOCK /*!< LOCK Level 3 */ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_CHANNEL Channel + * @{ + */ +#define LL_TIM_CHANNEL_CH1 TIM_CCER_CC1E /*!< Timer input/output channel 1 */ +#define LL_TIM_CHANNEL_CH1N TIM_CCER_CC1NE /*!< Timer complementary output channel 1 */ +#define LL_TIM_CHANNEL_CH2 TIM_CCER_CC2E /*!< Timer input/output channel 2 */ +#define LL_TIM_CHANNEL_CH2N TIM_CCER_CC2NE /*!< Timer complementary output channel 2 */ +#define LL_TIM_CHANNEL_CH3 TIM_CCER_CC3E /*!< Timer input/output channel 3 */ +#define LL_TIM_CHANNEL_CH3N TIM_CCER_CC3NE /*!< Timer complementary output channel 3 */ +#define LL_TIM_CHANNEL_CH4 TIM_CCER_CC4E /*!< Timer input/output channel 4 */ +/** + * @} + */ + +#if defined(USE_FULL_LL_DRIVER) +/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State + * @{ + */ +#define LL_TIM_OCSTATE_DISABLE 0x00000000U /*!< OCx is not active */ +#define LL_TIM_OCSTATE_ENABLE TIM_CCER_CC1E /*!< OCx signal is output on the corresponding output pin */ +/** + * @} + */ +#endif /* USE_FULL_LL_DRIVER */ + +/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode + * @{ + */ +#define LL_TIM_OCMODE_FROZEN 0x00000000U /*!TIMx_CCRy else active.*/ +#define LL_TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!TIMx_CCRy else inactive*/ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity + * @{ + */ +#define LL_TIM_OCPOLARITY_HIGH 0x00000000U /*!< OCxactive high*/ +#define LL_TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< OCxactive low*/ +/** + * @} + */ + +/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State + * @{ + */ +#define LL_TIM_OCIDLESTATE_LOW 0x00000000U /*!__REG__, (__VALUE__)) + +/** + * @brief Read a value in TIM register. + * @param __INSTANCE__ TIM Instance + * @param __REG__ Register to be read + * @retval Register value + */ +#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__) +/** + * @} + */ + +/** + * @brief HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration. + * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120); + * @param __TIMCLK__ timer input clock frequency (in Hz) + * @param __CKD__ This parameter can be one of the following values: + * @arg @ref LL_TIM_CLOCKDIVISION_DIV1 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV2 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV4 + * @param __DT__ deadtime duration (in ns) + * @retval DTG[0:7] + */ +#define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__) \ + ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \ + (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__))) & DT_DELAY_1) : \ + (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \ + (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), \ + (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\ + (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \ + (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), \ + (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\ + (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? \ + (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), \ + (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\ + 0U) + +/** + * @brief HELPER macro calculating the prescaler value to achieve the required counter clock frequency. + * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000); + * @param __TIMCLK__ timer input clock frequency (in Hz) + * @param __CNTCLK__ counter clock frequency (in Hz) + * @retval Prescaler value (between Min_Data=0 and Max_Data=65535) + */ +#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__) \ + (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U) + +/** + * @brief HELPER macro calculating the auto-reload value to achieve the required output signal frequency. + * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000); + * @param __TIMCLK__ timer input clock frequency (in Hz) + * @param __PSC__ prescaler + * @param __FREQ__ output signal frequency (in Hz) + * @retval Auto-reload value (between Min_Data=0 and Max_Data=65535) + */ +#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \ + ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U) + +/** + * @brief HELPER macro calculating the compare value required to achieve the required timer output compare + * active/inactive delay. + * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10); + * @param __TIMCLK__ timer input clock frequency (in Hz) + * @param __PSC__ prescaler + * @param __DELAY__ timer output compare active/inactive delay (in us) + * @retval Compare value (between Min_Data=0 and Max_Data=65535) + */ +#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__) \ + ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \ + / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U)))) + +/** + * @brief HELPER macro calculating the auto-reload value to achieve the required pulse duration + * (when the timer operates in one pulse mode). + * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20); + * @param __TIMCLK__ timer input clock frequency (in Hz) + * @param __PSC__ prescaler + * @param __DELAY__ timer output compare active/inactive delay (in us) + * @param __PULSE__ pulse duration (in us) + * @retval Auto-reload value (between Min_Data=0 and Max_Data=65535) + */ +#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__) \ + ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \ + + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__)))) + +/** + * @brief HELPER macro retrieving the ratio of the input capture prescaler + * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ()); + * @param __ICPSC__ This parameter can be one of the following values: + * @arg @ref LL_TIM_ICPSC_DIV1 + * @arg @ref LL_TIM_ICPSC_DIV2 + * @arg @ref LL_TIM_ICPSC_DIV4 + * @arg @ref LL_TIM_ICPSC_DIV8 + * @retval Input capture prescaler ratio (1, 2, 4 or 8) + */ +#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__) \ + ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos))) + + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIM_LL_EF_Time_Base Time Base configuration + * @{ + */ +/** + * @brief Enable timer counter. + * @rmtoll CR1 CEN LL_TIM_EnableCounter + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->CR1, TIM_CR1_CEN); +} + +/** + * @brief Disable timer counter. + * @rmtoll CR1 CEN LL_TIM_DisableCounter + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN); +} + +/** + * @brief Indicates whether the timer counter is enabled. + * @rmtoll CR1 CEN LL_TIM_IsEnabledCounter + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL); +} + +/** + * @brief Enable update event generation. + * @rmtoll CR1 UDIS LL_TIM_EnableUpdateEvent + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS); +} + +/** + * @brief Disable update event generation. + * @rmtoll CR1 UDIS LL_TIM_DisableUpdateEvent + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->CR1, TIM_CR1_UDIS); +} + +/** + * @brief Indicates whether update event generation is enabled. + * @rmtoll CR1 UDIS LL_TIM_IsEnabledUpdateEvent + * @param TIMx Timer instance + * @retval Inverted state of bit (0 or 1). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL); +} + +/** + * @brief Set update event source + * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events + * generate an update interrupt or DMA request if enabled: + * - Counter overflow/underflow + * - Setting the UG bit + * - Update generation through the slave mode controller + * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter + * overflow/underflow generates an update interrupt or DMA request if enabled. + * @rmtoll CR1 URS LL_TIM_SetUpdateSource + * @param TIMx Timer instance + * @param UpdateSource This parameter can be one of the following values: + * @arg @ref LL_TIM_UPDATESOURCE_REGULAR + * @arg @ref LL_TIM_UPDATESOURCE_COUNTER + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource) +{ + MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource); +} + +/** + * @brief Get actual event update source + * @rmtoll CR1 URS LL_TIM_GetUpdateSource + * @param TIMx Timer instance + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_UPDATESOURCE_REGULAR + * @arg @ref LL_TIM_UPDATESOURCE_COUNTER + */ +__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS)); +} + +/** + * @brief Set one pulse mode (one shot v.s. repetitive). + * @rmtoll CR1 OPM LL_TIM_SetOnePulseMode + * @param TIMx Timer instance + * @param OnePulseMode This parameter can be one of the following values: + * @arg @ref LL_TIM_ONEPULSEMODE_SINGLE + * @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode) +{ + MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode); +} + +/** + * @brief Get actual one pulse mode. + * @rmtoll CR1 OPM LL_TIM_GetOnePulseMode + * @param TIMx Timer instance + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_ONEPULSEMODE_SINGLE + * @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE + */ +__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM)); +} + +/** + * @brief Set the timer counter counting mode. + * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to + * check whether or not the counter mode selection feature is supported + * by a timer instance. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * @rmtoll CR1 DIR LL_TIM_SetCounterMode\n + * CR1 CMS LL_TIM_SetCounterMode + * @param TIMx Timer instance + * @param CounterMode This parameter can be one of the following values: + * @arg @ref LL_TIM_COUNTERMODE_UP + * @arg @ref LL_TIM_COUNTERMODE_DOWN + * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP + * @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN + * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode) +{ + MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode); +} + +/** + * @brief Get actual counter mode. + * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to + * check whether or not the counter mode selection feature is supported + * by a timer instance. + * @rmtoll CR1 DIR LL_TIM_GetCounterMode\n + * CR1 CMS LL_TIM_GetCounterMode + * @param TIMx Timer instance + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_COUNTERMODE_UP + * @arg @ref LL_TIM_COUNTERMODE_DOWN + * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP + * @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN + * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN + */ +__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx) +{ + uint32_t counter_mode; + + counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS)); + + if (counter_mode == 0U) + { + counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR)); + } + + return counter_mode; +} + +/** + * @brief Enable auto-reload (ARR) preload. + * @rmtoll CR1 ARPE LL_TIM_EnableARRPreload + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->CR1, TIM_CR1_ARPE); +} + +/** + * @brief Disable auto-reload (ARR) preload. + * @rmtoll CR1 ARPE LL_TIM_DisableARRPreload + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE); +} + +/** + * @brief Indicates whether auto-reload (ARR) preload is enabled. + * @rmtoll CR1 ARPE LL_TIM_IsEnabledARRPreload + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL); +} + +/** + * @brief Set the division ratio between the timer clock and the sampling clock used by the dead-time generators + * (when supported) and the digital filters. + * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check + * whether or not the clock division feature is supported by the timer + * instance. + * @rmtoll CR1 CKD LL_TIM_SetClockDivision + * @param TIMx Timer instance + * @param ClockDivision This parameter can be one of the following values: + * @arg @ref LL_TIM_CLOCKDIVISION_DIV1 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV2 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision) +{ + MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision); +} + +/** + * @brief Get the actual division ratio between the timer clock and the sampling clock used by the dead-time + * generators (when supported) and the digital filters. + * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check + * whether or not the clock division feature is supported by the timer + * instance. + * @rmtoll CR1 CKD LL_TIM_GetClockDivision + * @param TIMx Timer instance + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_CLOCKDIVISION_DIV1 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV2 + * @arg @ref LL_TIM_CLOCKDIVISION_DIV4 + */ +__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD)); +} + +/** + * @brief Set the counter value. + * @rmtoll CNT CNT LL_TIM_SetCounter + * @param TIMx Timer instance + * @param Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF) + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter) +{ + WRITE_REG(TIMx->CNT, Counter); +} + +/** + * @brief Get the counter value. + * @rmtoll CNT CNT LL_TIM_GetCounter + * @param TIMx Timer instance + * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF) + */ +__STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CNT)); +} + +/** + * @brief Get the current direction of the counter + * @rmtoll CR1 DIR LL_TIM_GetDirection + * @param TIMx Timer instance + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_COUNTERDIRECTION_UP + * @arg @ref LL_TIM_COUNTERDIRECTION_DOWN + */ +__STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR)); +} + +/** + * @brief Set the prescaler value. + * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). + * @note The prescaler can be changed on the fly as this control register is buffered. The new + * prescaler ratio is taken into account at the next update event. + * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter + * @rmtoll PSC PSC LL_TIM_SetPrescaler + * @param TIMx Timer instance + * @param Prescaler between Min_Data=0 and Max_Data=65535 + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler) +{ + WRITE_REG(TIMx->PSC, Prescaler); +} + +/** + * @brief Get the prescaler value. + * @rmtoll PSC PSC LL_TIM_GetPrescaler + * @param TIMx Timer instance + * @retval Prescaler value between Min_Data=0 and Max_Data=65535 + */ +__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->PSC)); +} + +/** + * @brief Set the auto-reload value. + * @note The counter is blocked while the auto-reload value is null. + * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter + * @rmtoll ARR ARR LL_TIM_SetAutoReload + * @param TIMx Timer instance + * @param AutoReload between Min_Data=0 and Max_Data=65535 + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload) +{ + WRITE_REG(TIMx->ARR, AutoReload); +} + +/** + * @brief Get the auto-reload value. + * @rmtoll ARR ARR LL_TIM_GetAutoReload + * @param TIMx Timer instance + * @retval Auto-reload value + */ +__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->ARR)); +} + +/** + * @brief Set the repetition counter value. + * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports a repetition counter. + * @rmtoll RCR REP LL_TIM_SetRepetitionCounter + * @param TIMx Timer instance + * @param RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer. + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter) +{ + WRITE_REG(TIMx->RCR, RepetitionCounter); +} + +/** + * @brief Get the repetition counter value. + * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports a repetition counter. + * @rmtoll RCR REP LL_TIM_GetRepetitionCounter + * @param TIMx Timer instance + * @retval Repetition counter value + */ +__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->RCR)); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration + * @{ + */ +/** + * @brief Enable the capture/compare control bits (CCxE, CCxNE and OCxM) preload. + * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written, + * they are updated only when a commutation event (COM) occurs. + * @note Only on channels that have a complementary output. + * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check + * whether or not a timer instance is able to generate a commutation event. + * @rmtoll CR2 CCPC LL_TIM_CC_EnablePreload + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->CR2, TIM_CR2_CCPC); +} + +/** + * @brief Disable the capture/compare control bits (CCxE, CCxNE and OCxM) preload. + * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check + * whether or not a timer instance is able to generate a commutation event. + * @rmtoll CR2 CCPC LL_TIM_CC_DisablePreload + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC); +} + +/** + * @brief Indicates whether the capture/compare control bits (CCxE, CCxNE and OCxM) preload is enabled. + * @rmtoll CR2 CCPC LL_TIM_CC_IsEnabledPreload + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->CR2, TIM_CR2_CCPC) == (TIM_CR2_CCPC)) ? 1UL : 0UL); +} + +/** + * @brief Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM). + * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check + * whether or not a timer instance is able to generate a commutation event. + * @rmtoll CR2 CCUS LL_TIM_CC_SetUpdate + * @param TIMx Timer instance + * @param CCUpdateSource This parameter can be one of the following values: + * @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY + * @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource) +{ + MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource); +} + +/** + * @brief Set the trigger of the capture/compare DMA request. + * @rmtoll CR2 CCDS LL_TIM_CC_SetDMAReqTrigger + * @param TIMx Timer instance + * @param DMAReqTrigger This parameter can be one of the following values: + * @arg @ref LL_TIM_CCDMAREQUEST_CC + * @arg @ref LL_TIM_CCDMAREQUEST_UPDATE + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger) +{ + MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger); +} + +/** + * @brief Get actual trigger of the capture/compare DMA request. + * @rmtoll CR2 CCDS LL_TIM_CC_GetDMAReqTrigger + * @param TIMx Timer instance + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_CCDMAREQUEST_CC + * @arg @ref LL_TIM_CCDMAREQUEST_UPDATE + */ +__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS)); +} + +/** + * @brief Set the lock level to freeze the + * configuration of several capture/compare parameters. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * the lock mechanism is supported by a timer instance. + * @rmtoll BDTR LOCK LL_TIM_CC_SetLockLevel + * @param TIMx Timer instance + * @param LockLevel This parameter can be one of the following values: + * @arg @ref LL_TIM_LOCKLEVEL_OFF + * @arg @ref LL_TIM_LOCKLEVEL_1 + * @arg @ref LL_TIM_LOCKLEVEL_2 + * @arg @ref LL_TIM_LOCKLEVEL_3 + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel) +{ + MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel); +} + +/** + * @brief Enable capture/compare channels. + * @rmtoll CCER CC1E LL_TIM_CC_EnableChannel\n + * CCER CC1NE LL_TIM_CC_EnableChannel\n + * CCER CC2E LL_TIM_CC_EnableChannel\n + * CCER CC2NE LL_TIM_CC_EnableChannel\n + * CCER CC3E LL_TIM_CC_EnableChannel\n + * CCER CC3NE LL_TIM_CC_EnableChannel\n + * CCER CC4E LL_TIM_CC_EnableChannel + * @param TIMx Timer instance + * @param Channels This parameter can be a combination of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels) +{ + SET_BIT(TIMx->CCER, Channels); +} + +/** + * @brief Disable capture/compare channels. + * @rmtoll CCER CC1E LL_TIM_CC_DisableChannel\n + * CCER CC1NE LL_TIM_CC_DisableChannel\n + * CCER CC2E LL_TIM_CC_DisableChannel\n + * CCER CC2NE LL_TIM_CC_DisableChannel\n + * CCER CC3E LL_TIM_CC_DisableChannel\n + * CCER CC3NE LL_TIM_CC_DisableChannel\n + * CCER CC4E LL_TIM_CC_DisableChannel + * @param TIMx Timer instance + * @param Channels This parameter can be a combination of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels) +{ + CLEAR_BIT(TIMx->CCER, Channels); +} + +/** + * @brief Indicate whether channel(s) is(are) enabled. + * @rmtoll CCER CC1E LL_TIM_CC_IsEnabledChannel\n + * CCER CC1NE LL_TIM_CC_IsEnabledChannel\n + * CCER CC2E LL_TIM_CC_IsEnabledChannel\n + * CCER CC2NE LL_TIM_CC_IsEnabledChannel\n + * CCER CC3E LL_TIM_CC_IsEnabledChannel\n + * CCER CC3NE LL_TIM_CC_IsEnabledChannel\n + * CCER CC4E LL_TIM_CC_IsEnabledChannel + * @param TIMx Timer instance + * @param Channels This parameter can be a combination of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels) +{ + return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration + * @{ + */ +/** + * @brief Configure an output channel. + * @rmtoll CCMR1 CC1S LL_TIM_OC_ConfigOutput\n + * CCMR1 CC2S LL_TIM_OC_ConfigOutput\n + * CCMR2 CC3S LL_TIM_OC_ConfigOutput\n + * CCMR2 CC4S LL_TIM_OC_ConfigOutput\n + * CCER CC1P LL_TIM_OC_ConfigOutput\n + * CCER CC2P LL_TIM_OC_ConfigOutput\n + * CCER CC3P LL_TIM_OC_ConfigOutput\n + * CCER CC4P LL_TIM_OC_ConfigOutput\n + * CR2 OIS1 LL_TIM_OC_ConfigOutput\n + * CR2 OIS2 LL_TIM_OC_ConfigOutput\n + * CR2 OIS3 LL_TIM_OC_ConfigOutput\n + * CR2 OIS4 LL_TIM_OC_ConfigOutput + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param Configuration This parameter must be a combination of all the following values: + * @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW + * @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel])); + MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), + (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]); + MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]), + (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]); +} + +/** + * @brief Define the behavior of the output reference signal OCxREF from which + * OCx and OCxN (when relevant) are derived. + * @rmtoll CCMR1 OC1M LL_TIM_OC_SetMode\n + * CCMR1 OC2M LL_TIM_OC_SetMode\n + * CCMR2 OC3M LL_TIM_OC_SetMode\n + * CCMR2 OC4M LL_TIM_OC_SetMode + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param Mode This parameter can be one of the following values: + * @arg @ref LL_TIM_OCMODE_FROZEN + * @arg @ref LL_TIM_OCMODE_ACTIVE + * @arg @ref LL_TIM_OCMODE_INACTIVE + * @arg @ref LL_TIM_OCMODE_TOGGLE + * @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE + * @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE + * @arg @ref LL_TIM_OCMODE_PWM1 + * @arg @ref LL_TIM_OCMODE_PWM2 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]); +} + +/** + * @brief Get the output compare mode of an output channel. + * @rmtoll CCMR1 OC1M LL_TIM_OC_GetMode\n + * CCMR1 OC2M LL_TIM_OC_GetMode\n + * CCMR2 OC3M LL_TIM_OC_GetMode\n + * CCMR2 OC4M LL_TIM_OC_GetMode + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_OCMODE_FROZEN + * @arg @ref LL_TIM_OCMODE_ACTIVE + * @arg @ref LL_TIM_OCMODE_INACTIVE + * @arg @ref LL_TIM_OCMODE_TOGGLE + * @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE + * @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE + * @arg @ref LL_TIM_OCMODE_PWM1 + * @arg @ref LL_TIM_OCMODE_PWM2 + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]); +} + +/** + * @brief Set the polarity of an output channel. + * @rmtoll CCER CC1P LL_TIM_OC_SetPolarity\n + * CCER CC1NP LL_TIM_OC_SetPolarity\n + * CCER CC2P LL_TIM_OC_SetPolarity\n + * CCER CC2NP LL_TIM_OC_SetPolarity\n + * CCER CC3P LL_TIM_OC_SetPolarity\n + * CCER CC3NP LL_TIM_OC_SetPolarity\n + * CCER CC4P LL_TIM_OC_SetPolarity + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param Polarity This parameter can be one of the following values: + * @arg @ref LL_TIM_OCPOLARITY_HIGH + * @arg @ref LL_TIM_OCPOLARITY_LOW + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), Polarity << SHIFT_TAB_CCxP[iChannel]); +} + +/** + * @brief Get the polarity of an output channel. + * @rmtoll CCER CC1P LL_TIM_OC_GetPolarity\n + * CCER CC1NP LL_TIM_OC_GetPolarity\n + * CCER CC2P LL_TIM_OC_GetPolarity\n + * CCER CC2NP LL_TIM_OC_GetPolarity\n + * CCER CC3P LL_TIM_OC_GetPolarity\n + * CCER CC3NP LL_TIM_OC_GetPolarity\n + * CCER CC4P LL_TIM_OC_GetPolarity + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_OCPOLARITY_HIGH + * @arg @ref LL_TIM_OCPOLARITY_LOW + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]); +} + +/** + * @brief Set the IDLE state of an output channel + * @note This function is significant only for the timer instances + * supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx) + * can be used to check whether or not a timer instance provides + * a break input. + * @rmtoll CR2 OIS1 LL_TIM_OC_SetIdleState\n + * CR2 OIS1N LL_TIM_OC_SetIdleState\n + * CR2 OIS2 LL_TIM_OC_SetIdleState\n + * CR2 OIS2N LL_TIM_OC_SetIdleState\n + * CR2 OIS3 LL_TIM_OC_SetIdleState\n + * CR2 OIS3N LL_TIM_OC_SetIdleState\n + * CR2 OIS4 LL_TIM_OC_SetIdleState + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param IdleState This parameter can be one of the following values: + * @arg @ref LL_TIM_OCIDLESTATE_LOW + * @arg @ref LL_TIM_OCIDLESTATE_HIGH + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]), IdleState << SHIFT_TAB_OISx[iChannel]); +} + +/** + * @brief Get the IDLE state of an output channel + * @rmtoll CR2 OIS1 LL_TIM_OC_GetIdleState\n + * CR2 OIS1N LL_TIM_OC_GetIdleState\n + * CR2 OIS2 LL_TIM_OC_GetIdleState\n + * CR2 OIS2N LL_TIM_OC_GetIdleState\n + * CR2 OIS3 LL_TIM_OC_GetIdleState\n + * CR2 OIS3N LL_TIM_OC_GetIdleState\n + * CR2 OIS4 LL_TIM_OC_GetIdleState + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH1N + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH2N + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH3N + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_OCIDLESTATE_LOW + * @arg @ref LL_TIM_OCIDLESTATE_HIGH + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]); +} + +/** + * @brief Enable fast mode for the output channel. + * @note Acts only if the channel is configured in PWM1 or PWM2 mode. + * @rmtoll CCMR1 OC1FE LL_TIM_OC_EnableFast\n + * CCMR1 OC2FE LL_TIM_OC_EnableFast\n + * CCMR2 OC3FE LL_TIM_OC_EnableFast\n + * CCMR2 OC4FE LL_TIM_OC_EnableFast + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel])); + +} + +/** + * @brief Disable fast mode for the output channel. + * @rmtoll CCMR1 OC1FE LL_TIM_OC_DisableFast\n + * CCMR1 OC2FE LL_TIM_OC_DisableFast\n + * CCMR2 OC3FE LL_TIM_OC_DisableFast\n + * CCMR2 OC4FE LL_TIM_OC_DisableFast + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel])); + +} + +/** + * @brief Indicates whether fast mode is enabled for the output channel. + * @rmtoll CCMR1 OC1FE LL_TIM_OC_IsEnabledFast\n + * CCMR1 OC2FE LL_TIM_OC_IsEnabledFast\n + * CCMR2 OC3FE LL_TIM_OC_IsEnabledFast\n + * CCMR2 OC4FE LL_TIM_OC_IsEnabledFast\n + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]; + return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL); +} + +/** + * @brief Enable compare register (TIMx_CCRx) preload for the output channel. + * @rmtoll CCMR1 OC1PE LL_TIM_OC_EnablePreload\n + * CCMR1 OC2PE LL_TIM_OC_EnablePreload\n + * CCMR2 OC3PE LL_TIM_OC_EnablePreload\n + * CCMR2 OC4PE LL_TIM_OC_EnablePreload + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel])); +} + +/** + * @brief Disable compare register (TIMx_CCRx) preload for the output channel. + * @rmtoll CCMR1 OC1PE LL_TIM_OC_DisablePreload\n + * CCMR1 OC2PE LL_TIM_OC_DisablePreload\n + * CCMR2 OC3PE LL_TIM_OC_DisablePreload\n + * CCMR2 OC4PE LL_TIM_OC_DisablePreload + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel])); +} + +/** + * @brief Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel. + * @rmtoll CCMR1 OC1PE LL_TIM_OC_IsEnabledPreload\n + * CCMR1 OC2PE LL_TIM_OC_IsEnabledPreload\n + * CCMR2 OC3PE LL_TIM_OC_IsEnabledPreload\n + * CCMR2 OC4PE LL_TIM_OC_IsEnabledPreload\n + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]; + return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL); +} + +/** + * @brief Enable clearing the output channel on an external event. + * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode. + * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether + * or not a timer instance can clear the OCxREF signal on an external event. + * @rmtoll CCMR1 OC1CE LL_TIM_OC_EnableClear\n + * CCMR1 OC2CE LL_TIM_OC_EnableClear\n + * CCMR2 OC3CE LL_TIM_OC_EnableClear\n + * CCMR2 OC4CE LL_TIM_OC_EnableClear + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel])); +} + +/** + * @brief Disable clearing the output channel on an external event. + * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether + * or not a timer instance can clear the OCxREF signal on an external event. + * @rmtoll CCMR1 OC1CE LL_TIM_OC_DisableClear\n + * CCMR1 OC2CE LL_TIM_OC_DisableClear\n + * CCMR2 OC3CE LL_TIM_OC_DisableClear\n + * CCMR2 OC4CE LL_TIM_OC_DisableClear + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel])); +} + +/** + * @brief Indicates clearing the output channel on an external event is enabled for the output channel. + * @note This function enables clearing the output channel on an external event. + * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode. + * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether + * or not a timer instance can clear the OCxREF signal on an external event. + * @rmtoll CCMR1 OC1CE LL_TIM_OC_IsEnabledClear\n + * CCMR1 OC2CE LL_TIM_OC_IsEnabledClear\n + * CCMR2 OC3CE LL_TIM_OC_IsEnabledClear\n + * CCMR2 OC4CE LL_TIM_OC_IsEnabledClear\n + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]; + return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL); +} + +/** + * @brief Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of + * the Ocx and OCxN signals). + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * dead-time insertion feature is supported by a timer instance. + * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter + * @rmtoll BDTR DTG LL_TIM_OC_SetDeadTime + * @param TIMx Timer instance + * @param DeadTime between Min_Data=0 and Max_Data=255 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime) +{ + MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime); +} + +/** + * @brief Set compare value for output channel 1 (TIMx_CCR1). + * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not + * output channel 1 is supported by a timer instance. + * @rmtoll CCR1 CCR1 LL_TIM_OC_SetCompareCH1 + * @param TIMx Timer instance + * @param CompareValue between Min_Data=0 and Max_Data=65535 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue) +{ + WRITE_REG(TIMx->CCR1, CompareValue); +} + +/** + * @brief Set compare value for output channel 2 (TIMx_CCR2). + * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not + * output channel 2 is supported by a timer instance. + * @rmtoll CCR2 CCR2 LL_TIM_OC_SetCompareCH2 + * @param TIMx Timer instance + * @param CompareValue between Min_Data=0 and Max_Data=65535 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue) +{ + WRITE_REG(TIMx->CCR2, CompareValue); +} + +/** + * @brief Set compare value for output channel 3 (TIMx_CCR3). + * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not + * output channel is supported by a timer instance. + * @rmtoll CCR3 CCR3 LL_TIM_OC_SetCompareCH3 + * @param TIMx Timer instance + * @param CompareValue between Min_Data=0 and Max_Data=65535 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue) +{ + WRITE_REG(TIMx->CCR3, CompareValue); +} + +/** + * @brief Set compare value for output channel 4 (TIMx_CCR4). + * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not + * output channel 4 is supported by a timer instance. + * @rmtoll CCR4 CCR4 LL_TIM_OC_SetCompareCH4 + * @param TIMx Timer instance + * @param CompareValue between Min_Data=0 and Max_Data=65535 + * @retval None + */ +__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue) +{ + WRITE_REG(TIMx->CCR4, CompareValue); +} + +/** + * @brief Get compare value (TIMx_CCR1) set for output channel 1. + * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not + * output channel 1 is supported by a timer instance. + * @rmtoll CCR1 CCR1 LL_TIM_OC_GetCompareCH1 + * @param TIMx Timer instance + * @retval CompareValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR1)); +} + +/** + * @brief Get compare value (TIMx_CCR2) set for output channel 2. + * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not + * output channel 2 is supported by a timer instance. + * @rmtoll CCR2 CCR2 LL_TIM_OC_GetCompareCH2 + * @param TIMx Timer instance + * @retval CompareValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR2)); +} + +/** + * @brief Get compare value (TIMx_CCR3) set for output channel 3. + * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not + * output channel 3 is supported by a timer instance. + * @rmtoll CCR3 CCR3 LL_TIM_OC_GetCompareCH3 + * @param TIMx Timer instance + * @retval CompareValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR3)); +} + +/** + * @brief Get compare value (TIMx_CCR4) set for output channel 4. + * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not + * output channel 4 is supported by a timer instance. + * @rmtoll CCR4 CCR4 LL_TIM_OC_GetCompareCH4 + * @param TIMx Timer instance + * @retval CompareValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR4)); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration + * @{ + */ +/** + * @brief Configure input channel. + * @rmtoll CCMR1 CC1S LL_TIM_IC_Config\n + * CCMR1 IC1PSC LL_TIM_IC_Config\n + * CCMR1 IC1F LL_TIM_IC_Config\n + * CCMR1 CC2S LL_TIM_IC_Config\n + * CCMR1 IC2PSC LL_TIM_IC_Config\n + * CCMR1 IC2F LL_TIM_IC_Config\n + * CCMR2 CC3S LL_TIM_IC_Config\n + * CCMR2 IC3PSC LL_TIM_IC_Config\n + * CCMR2 IC3F LL_TIM_IC_Config\n + * CCMR2 CC4S LL_TIM_IC_Config\n + * CCMR2 IC4PSC LL_TIM_IC_Config\n + * CCMR2 IC4F LL_TIM_IC_Config\n + * CCER CC1P LL_TIM_IC_Config\n + * CCER CC1NP LL_TIM_IC_Config\n + * CCER CC2P LL_TIM_IC_Config\n + * CCER CC2NP LL_TIM_IC_Config\n + * CCER CC3P LL_TIM_IC_Config\n + * CCER CC3NP LL_TIM_IC_Config\n + * CCER CC4P LL_TIM_IC_Config\n + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param Configuration This parameter must be a combination of all the following values: + * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC + * @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8 + * @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8 + * @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), + ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S)) \ + << SHIFT_TAB_ICxx[iChannel]); + MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]), + (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]); +} + +/** + * @brief Set the active input. + * @rmtoll CCMR1 CC1S LL_TIM_IC_SetActiveInput\n + * CCMR1 CC2S LL_TIM_IC_SetActiveInput\n + * CCMR2 CC3S LL_TIM_IC_SetActiveInput\n + * CCMR2 CC4S LL_TIM_IC_SetActiveInput + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param ICActiveInput This parameter can be one of the following values: + * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI + * @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI + * @arg @ref LL_TIM_ACTIVEINPUT_TRC + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]); +} + +/** + * @brief Get the current active input. + * @rmtoll CCMR1 CC1S LL_TIM_IC_GetActiveInput\n + * CCMR1 CC2S LL_TIM_IC_GetActiveInput\n + * CCMR2 CC3S LL_TIM_IC_GetActiveInput\n + * CCMR2 CC4S LL_TIM_IC_GetActiveInput + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI + * @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI + * @arg @ref LL_TIM_ACTIVEINPUT_TRC + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U); +} + +/** + * @brief Set the prescaler of input channel. + * @rmtoll CCMR1 IC1PSC LL_TIM_IC_SetPrescaler\n + * CCMR1 IC2PSC LL_TIM_IC_SetPrescaler\n + * CCMR2 IC3PSC LL_TIM_IC_SetPrescaler\n + * CCMR2 IC4PSC LL_TIM_IC_SetPrescaler + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param ICPrescaler This parameter can be one of the following values: + * @arg @ref LL_TIM_ICPSC_DIV1 + * @arg @ref LL_TIM_ICPSC_DIV2 + * @arg @ref LL_TIM_ICPSC_DIV4 + * @arg @ref LL_TIM_ICPSC_DIV8 + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]); +} + +/** + * @brief Get the current prescaler value acting on an input channel. + * @rmtoll CCMR1 IC1PSC LL_TIM_IC_GetPrescaler\n + * CCMR1 IC2PSC LL_TIM_IC_GetPrescaler\n + * CCMR2 IC3PSC LL_TIM_IC_GetPrescaler\n + * CCMR2 IC4PSC LL_TIM_IC_GetPrescaler + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_ICPSC_DIV1 + * @arg @ref LL_TIM_ICPSC_DIV2 + * @arg @ref LL_TIM_ICPSC_DIV4 + * @arg @ref LL_TIM_ICPSC_DIV8 + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U); +} + +/** + * @brief Set the input filter duration. + * @rmtoll CCMR1 IC1F LL_TIM_IC_SetFilter\n + * CCMR1 IC2F LL_TIM_IC_SetFilter\n + * CCMR2 IC3F LL_TIM_IC_SetFilter\n + * CCMR2 IC4F LL_TIM_IC_SetFilter + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param ICFilter This parameter can be one of the following values: + * @arg @ref LL_TIM_IC_FILTER_FDIV1 + * @arg @ref LL_TIM_IC_FILTER_FDIV1_N2 + * @arg @ref LL_TIM_IC_FILTER_FDIV1_N4 + * @arg @ref LL_TIM_IC_FILTER_FDIV1_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV2_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV2_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV4_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV4_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV8_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV8_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV16_N5 + * @arg @ref LL_TIM_IC_FILTER_FDIV16_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV16_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV32_N5 + * @arg @ref LL_TIM_IC_FILTER_FDIV32_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV32_N8 + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]); +} + +/** + * @brief Get the input filter duration. + * @rmtoll CCMR1 IC1F LL_TIM_IC_GetFilter\n + * CCMR1 IC2F LL_TIM_IC_GetFilter\n + * CCMR2 IC3F LL_TIM_IC_GetFilter\n + * CCMR2 IC4F LL_TIM_IC_GetFilter + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_IC_FILTER_FDIV1 + * @arg @ref LL_TIM_IC_FILTER_FDIV1_N2 + * @arg @ref LL_TIM_IC_FILTER_FDIV1_N4 + * @arg @ref LL_TIM_IC_FILTER_FDIV1_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV2_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV2_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV4_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV4_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV8_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV8_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV16_N5 + * @arg @ref LL_TIM_IC_FILTER_FDIV16_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV16_N8 + * @arg @ref LL_TIM_IC_FILTER_FDIV32_N5 + * @arg @ref LL_TIM_IC_FILTER_FDIV32_N6 + * @arg @ref LL_TIM_IC_FILTER_FDIV32_N8 + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); + return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U); +} + +/** + * @brief Set the input channel polarity. + * @rmtoll CCER CC1P LL_TIM_IC_SetPolarity\n + * CCER CC1NP LL_TIM_IC_SetPolarity\n + * CCER CC2P LL_TIM_IC_SetPolarity\n + * CCER CC2NP LL_TIM_IC_SetPolarity\n + * CCER CC3P LL_TIM_IC_SetPolarity\n + * CCER CC3NP LL_TIM_IC_SetPolarity\n + * CCER CC4P LL_TIM_IC_SetPolarity\n + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @param ICPolarity This parameter can be one of the following values: + * @arg @ref LL_TIM_IC_POLARITY_RISING + * @arg @ref LL_TIM_IC_POLARITY_FALLING + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]), + ICPolarity << SHIFT_TAB_CCxP[iChannel]); +} + +/** + * @brief Get the current input channel polarity. + * @rmtoll CCER CC1P LL_TIM_IC_GetPolarity\n + * CCER CC1NP LL_TIM_IC_GetPolarity\n + * CCER CC2P LL_TIM_IC_GetPolarity\n + * CCER CC2NP LL_TIM_IC_GetPolarity\n + * CCER CC3P LL_TIM_IC_GetPolarity\n + * CCER CC3NP LL_TIM_IC_GetPolarity\n + * CCER CC4P LL_TIM_IC_GetPolarity\n + * @param TIMx Timer instance + * @param Channel This parameter can be one of the following values: + * @arg @ref LL_TIM_CHANNEL_CH1 + * @arg @ref LL_TIM_CHANNEL_CH2 + * @arg @ref LL_TIM_CHANNEL_CH3 + * @arg @ref LL_TIM_CHANNEL_CH4 + * @retval Returned value can be one of the following values: + * @arg @ref LL_TIM_IC_POLARITY_RISING + * @arg @ref LL_TIM_IC_POLARITY_FALLING + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel) +{ + uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); + return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >> + SHIFT_TAB_CCxP[iChannel]); +} + +/** + * @brief Connect the TIMx_CH1, CH2 and CH3 pins to the TI1 input (XOR combination). + * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides an XOR input. + * @rmtoll CR2 TI1S LL_TIM_IC_EnableXORCombination + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->CR2, TIM_CR2_TI1S); +} + +/** + * @brief Disconnect the TIMx_CH1, CH2 and CH3 pins from the TI1 input. + * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides an XOR input. + * @rmtoll CR2 TI1S LL_TIM_IC_DisableXORCombination + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S); +} + +/** + * @brief Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input. + * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides an XOR input. + * @rmtoll CR2 TI1S LL_TIM_IC_IsEnabledXORCombination + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL); +} + +/** + * @brief Get captured value for input channel 1. + * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not + * input channel 1 is supported by a timer instance. + * @rmtoll CCR1 CCR1 LL_TIM_IC_GetCaptureCH1 + * @param TIMx Timer instance + * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR1)); +} + +/** + * @brief Get captured value for input channel 2. + * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not + * input channel 2 is supported by a timer instance. + * @rmtoll CCR2 CCR2 LL_TIM_IC_GetCaptureCH2 + * @param TIMx Timer instance + * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR2)); +} + +/** + * @brief Get captured value for input channel 3. + * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not + * input channel 3 is supported by a timer instance. + * @rmtoll CCR3 CCR3 LL_TIM_IC_GetCaptureCH3 + * @param TIMx Timer instance + * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR3)); +} + +/** + * @brief Get captured value for input channel 4. + * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not + * input channel 4 is supported by a timer instance. + * @rmtoll CCR4 CCR4 LL_TIM_IC_GetCaptureCH4 + * @param TIMx Timer instance + * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) + */ +__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx) +{ + return (uint32_t)(READ_REG(TIMx->CCR4)); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection + * @{ + */ +/** + * @brief Enable external clock mode 2. + * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal. + * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports external clock mode2. + * @rmtoll SMCR ECE LL_TIM_EnableExternalClock + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->SMCR, TIM_SMCR_ECE); +} + +/** + * @brief Disable external clock mode 2. + * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports external clock mode2. + * @rmtoll SMCR ECE LL_TIM_DisableExternalClock + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE); +} + +/** + * @brief Indicate whether external clock mode 2 is enabled. + * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports external clock mode2. + * @rmtoll SMCR ECE LL_TIM_IsEnabledExternalClock + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL); +} + +/** + * @brief Set the clock source of the counter clock. + * @note when selected clock source is external clock mode 1, the timer input + * the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput() + * function. This timer input must be configured by calling + * the @ref LL_TIM_IC_Config() function. + * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports external clock mode1. + * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports external clock mode2. + * @rmtoll SMCR SMS LL_TIM_SetClockSource\n + * SMCR ECE LL_TIM_SetClockSource + * @param TIMx Timer instance + * @param ClockSource This parameter can be one of the following values: + * @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL + * @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1 + * @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2 + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource) +{ + MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource); +} + +/** + * @brief Set the encoder interface mode. + * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check + * whether or not a timer instance supports the encoder mode. + * @rmtoll SMCR SMS LL_TIM_SetEncoderMode + * @param TIMx Timer instance + * @param EncoderMode This parameter can be one of the following values: + * @arg @ref LL_TIM_ENCODERMODE_X2_TI1 + * @arg @ref LL_TIM_ENCODERMODE_X2_TI2 + * @arg @ref LL_TIM_ENCODERMODE_X4_TI12 + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode) +{ + MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration + * @{ + */ +/** + * @brief Set the trigger output (TRGO) used for timer synchronization . + * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check + * whether or not a timer instance can operate as a master timer. + * @rmtoll CR2 MMS LL_TIM_SetTriggerOutput + * @param TIMx Timer instance + * @param TimerSynchronization This parameter can be one of the following values: + * @arg @ref LL_TIM_TRGO_RESET + * @arg @ref LL_TIM_TRGO_ENABLE + * @arg @ref LL_TIM_TRGO_UPDATE + * @arg @ref LL_TIM_TRGO_CC1IF + * @arg @ref LL_TIM_TRGO_OC1REF + * @arg @ref LL_TIM_TRGO_OC2REF + * @arg @ref LL_TIM_TRGO_OC3REF + * @arg @ref LL_TIM_TRGO_OC4REF + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization) +{ + MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization); +} + +/** + * @brief Set the synchronization mode of a slave timer. + * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not + * a timer instance can operate as a slave timer. + * @rmtoll SMCR SMS LL_TIM_SetSlaveMode + * @param TIMx Timer instance + * @param SlaveMode This parameter can be one of the following values: + * @arg @ref LL_TIM_SLAVEMODE_DISABLED + * @arg @ref LL_TIM_SLAVEMODE_RESET + * @arg @ref LL_TIM_SLAVEMODE_GATED + * @arg @ref LL_TIM_SLAVEMODE_TRIGGER + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode) +{ + MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode); +} + +/** + * @brief Set the selects the trigger input to be used to synchronize the counter. + * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not + * a timer instance can operate as a slave timer. + * @rmtoll SMCR TS LL_TIM_SetTriggerInput + * @param TIMx Timer instance + * @param TriggerInput This parameter can be one of the following values: + * @arg @ref LL_TIM_TS_ITR0 + * @arg @ref LL_TIM_TS_ITR1 + * @arg @ref LL_TIM_TS_ITR2 + * @arg @ref LL_TIM_TS_ITR3 + * @arg @ref LL_TIM_TS_TI1F_ED + * @arg @ref LL_TIM_TS_TI1FP1 + * @arg @ref LL_TIM_TS_TI2FP2 + * @arg @ref LL_TIM_TS_ETRF + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput) +{ + MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput); +} + +/** + * @brief Enable the Master/Slave mode. + * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not + * a timer instance can operate as a slave timer. + * @rmtoll SMCR MSM LL_TIM_EnableMasterSlaveMode + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->SMCR, TIM_SMCR_MSM); +} + +/** + * @brief Disable the Master/Slave mode. + * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not + * a timer instance can operate as a slave timer. + * @rmtoll SMCR MSM LL_TIM_DisableMasterSlaveMode + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM); +} + +/** + * @brief Indicates whether the Master/Slave mode is enabled. + * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not + * a timer instance can operate as a slave timer. + * @rmtoll SMCR MSM LL_TIM_IsEnabledMasterSlaveMode + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL); +} + +/** + * @brief Configure the external trigger (ETR) input. + * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides an external trigger input. + * @rmtoll SMCR ETP LL_TIM_ConfigETR\n + * SMCR ETPS LL_TIM_ConfigETR\n + * SMCR ETF LL_TIM_ConfigETR + * @param TIMx Timer instance + * @param ETRPolarity This parameter can be one of the following values: + * @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED + * @arg @ref LL_TIM_ETR_POLARITY_INVERTED + * @param ETRPrescaler This parameter can be one of the following values: + * @arg @ref LL_TIM_ETR_PRESCALER_DIV1 + * @arg @ref LL_TIM_ETR_PRESCALER_DIV2 + * @arg @ref LL_TIM_ETR_PRESCALER_DIV4 + * @arg @ref LL_TIM_ETR_PRESCALER_DIV8 + * @param ETRFilter This parameter can be one of the following values: + * @arg @ref LL_TIM_ETR_FILTER_FDIV1 + * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2 + * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4 + * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8 + * @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6 + * @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8 + * @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6 + * @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8 + * @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6 + * @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8 + * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5 + * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6 + * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8 + * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5 + * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6 + * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8 + * @retval None + */ +__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler, + uint32_t ETRFilter) +{ + MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_Break_Function Break function configuration + * @{ + */ +/** + * @brief Enable the break function. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR BKE LL_TIM_EnableBRK + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx) +{ + __IO uint32_t tmpreg; + SET_BIT(TIMx->BDTR, TIM_BDTR_BKE); + /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */ + tmpreg = READ_REG(TIMx->BDTR); + (void)(tmpreg); +} + +/** + * @brief Disable the break function. + * @rmtoll BDTR BKE LL_TIM_DisableBRK + * @param TIMx Timer instance + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx) +{ + __IO uint32_t tmpreg; + CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE); + /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */ + tmpreg = READ_REG(TIMx->BDTR); + (void)(tmpreg); +} + +/** + * @brief Configure the break input. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR BKP LL_TIM_ConfigBRK + * @param TIMx Timer instance + * @param BreakPolarity This parameter can be one of the following values: + * @arg @ref LL_TIM_BREAK_POLARITY_LOW + * @arg @ref LL_TIM_BREAK_POLARITY_HIGH + * @retval None + */ +__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity) +{ + __IO uint32_t tmpreg; + MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP, BreakPolarity); + /* Note: Any write operation to BKP bit takes a delay of 1 APB clock cycle to become effective. */ + tmpreg = READ_REG(TIMx->BDTR); + (void)(tmpreg); +} + +/** + * @brief Select the outputs off state (enabled v.s. disabled) in Idle and Run modes. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR OSSI LL_TIM_SetOffStates\n + * BDTR OSSR LL_TIM_SetOffStates + * @param TIMx Timer instance + * @param OffStateIdle This parameter can be one of the following values: + * @arg @ref LL_TIM_OSSI_DISABLE + * @arg @ref LL_TIM_OSSI_ENABLE + * @param OffStateRun This parameter can be one of the following values: + * @arg @ref LL_TIM_OSSR_DISABLE + * @arg @ref LL_TIM_OSSR_ENABLE + * @retval None + */ +__STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun) +{ + MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun); +} + +/** + * @brief Enable automatic output (MOE can be set by software or automatically when a break input is active). + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR AOE LL_TIM_EnableAutomaticOutput + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->BDTR, TIM_BDTR_AOE); +} + +/** + * @brief Disable automatic output (MOE can be set only by software). + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR AOE LL_TIM_DisableAutomaticOutput + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE); +} + +/** + * @brief Indicate whether automatic output is enabled. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR AOE LL_TIM_IsEnabledAutomaticOutput + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL); +} + +/** + * @brief Enable the outputs (set the MOE bit in TIMx_BDTR register). + * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by + * software and is reset in case of break or break2 event + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR MOE LL_TIM_EnableAllOutputs + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->BDTR, TIM_BDTR_MOE); +} + +/** + * @brief Disable the outputs (reset the MOE bit in TIMx_BDTR register). + * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by + * software and is reset in case of break or break2 event. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR MOE LL_TIM_DisableAllOutputs + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE); +} + +/** + * @brief Indicates whether outputs are enabled. + * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not + * a timer instance provides a break input. + * @rmtoll BDTR MOE LL_TIM_IsEnabledAllOutputs + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration + * @{ + */ +/** + * @brief Configures the timer DMA burst feature. + * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or + * not a timer instance supports the DMA burst mode. + * @rmtoll DCR DBL LL_TIM_ConfigDMABurst\n + * DCR DBA LL_TIM_ConfigDMABurst + * @param TIMx Timer instance + * @param DMABurstBaseAddress This parameter can be one of the following values: + * @arg @ref LL_TIM_DMABURST_BASEADDR_CR1 + * @arg @ref LL_TIM_DMABURST_BASEADDR_CR2 + * @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR + * @arg @ref LL_TIM_DMABURST_BASEADDR_DIER + * @arg @ref LL_TIM_DMABURST_BASEADDR_SR + * @arg @ref LL_TIM_DMABURST_BASEADDR_EGR + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1 + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2 + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCER + * @arg @ref LL_TIM_DMABURST_BASEADDR_CNT + * @arg @ref LL_TIM_DMABURST_BASEADDR_PSC + * @arg @ref LL_TIM_DMABURST_BASEADDR_ARR + * @arg @ref LL_TIM_DMABURST_BASEADDR_RCR + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1 + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2 + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3 + * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4 + * @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR + * @param DMABurstLength This parameter can be one of the following values: + * @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER + * @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS + * @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS + * @retval None + */ +__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength) +{ + MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength)); +} + +/** + * @} + */ + + +/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management + * @{ + */ +/** + * @brief Clear the update interrupt flag (UIF). + * @rmtoll SR UIF LL_TIM_ClearFlag_UPDATE + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_UIF)); +} + +/** + * @brief Indicate whether update interrupt flag (UIF) is set (update interrupt is pending). + * @rmtoll SR UIF LL_TIM_IsActiveFlag_UPDATE + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 1 interrupt flag (CC1F). + * @rmtoll SR CC1IF LL_TIM_ClearFlag_CC1 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF)); +} + +/** + * @brief Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending). + * @rmtoll SR CC1IF LL_TIM_IsActiveFlag_CC1 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 2 interrupt flag (CC2F). + * @rmtoll SR CC2IF LL_TIM_ClearFlag_CC2 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF)); +} + +/** + * @brief Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending). + * @rmtoll SR CC2IF LL_TIM_IsActiveFlag_CC2 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 3 interrupt flag (CC3F). + * @rmtoll SR CC3IF LL_TIM_ClearFlag_CC3 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF)); +} + +/** + * @brief Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending). + * @rmtoll SR CC3IF LL_TIM_IsActiveFlag_CC3 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 4 interrupt flag (CC4F). + * @rmtoll SR CC4IF LL_TIM_ClearFlag_CC4 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF)); +} + +/** + * @brief Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending). + * @rmtoll SR CC4IF LL_TIM_IsActiveFlag_CC4 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the commutation interrupt flag (COMIF). + * @rmtoll SR COMIF LL_TIM_ClearFlag_COM + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF)); +} + +/** + * @brief Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending). + * @rmtoll SR COMIF LL_TIM_IsActiveFlag_COM + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the trigger interrupt flag (TIF). + * @rmtoll SR TIF LL_TIM_ClearFlag_TRIG + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_TIF)); +} + +/** + * @brief Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending). + * @rmtoll SR TIF LL_TIM_IsActiveFlag_TRIG + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the break interrupt flag (BIF). + * @rmtoll SR BIF LL_TIM_ClearFlag_BRK + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_BIF)); +} + +/** + * @brief Indicate whether break interrupt flag (BIF) is set (break interrupt is pending). + * @rmtoll SR BIF LL_TIM_IsActiveFlag_BRK + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF). + * @rmtoll SR CC1OF LL_TIM_ClearFlag_CC1OVR + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF)); +} + +/** + * @brief Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set + * (Capture/Compare 1 interrupt is pending). + * @rmtoll SR CC1OF LL_TIM_IsActiveFlag_CC1OVR + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF). + * @rmtoll SR CC2OF LL_TIM_ClearFlag_CC2OVR + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF)); +} + +/** + * @brief Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set + * (Capture/Compare 2 over-capture interrupt is pending). + * @rmtoll SR CC2OF LL_TIM_IsActiveFlag_CC2OVR + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF). + * @rmtoll SR CC3OF LL_TIM_ClearFlag_CC3OVR + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF)); +} + +/** + * @brief Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set + * (Capture/Compare 3 over-capture interrupt is pending). + * @rmtoll SR CC3OF LL_TIM_IsActiveFlag_CC3OVR + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL); +} + +/** + * @brief Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF). + * @rmtoll SR CC4OF LL_TIM_ClearFlag_CC4OVR + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx) +{ + WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF)); +} + +/** + * @brief Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set + * (Capture/Compare 4 over-capture interrupt is pending). + * @rmtoll SR CC4OF LL_TIM_IsActiveFlag_CC4OVR + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_IT_Management IT-Management + * @{ + */ +/** + * @brief Enable update interrupt (UIE). + * @rmtoll DIER UIE LL_TIM_EnableIT_UPDATE + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_UIE); +} + +/** + * @brief Disable update interrupt (UIE). + * @rmtoll DIER UIE LL_TIM_DisableIT_UPDATE + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE); +} + +/** + * @brief Indicates whether the update interrupt (UIE) is enabled. + * @rmtoll DIER UIE LL_TIM_IsEnabledIT_UPDATE + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 1 interrupt (CC1IE). + * @rmtoll DIER CC1IE LL_TIM_EnableIT_CC1 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC1IE); +} + +/** + * @brief Disable capture/compare 1 interrupt (CC1IE). + * @rmtoll DIER CC1IE LL_TIM_DisableIT_CC1 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE); +} + +/** + * @brief Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled. + * @rmtoll DIER CC1IE LL_TIM_IsEnabledIT_CC1 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 2 interrupt (CC2IE). + * @rmtoll DIER CC2IE LL_TIM_EnableIT_CC2 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC2IE); +} + +/** + * @brief Disable capture/compare 2 interrupt (CC2IE). + * @rmtoll DIER CC2IE LL_TIM_DisableIT_CC2 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE); +} + +/** + * @brief Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled. + * @rmtoll DIER CC2IE LL_TIM_IsEnabledIT_CC2 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 3 interrupt (CC3IE). + * @rmtoll DIER CC3IE LL_TIM_EnableIT_CC3 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC3IE); +} + +/** + * @brief Disable capture/compare 3 interrupt (CC3IE). + * @rmtoll DIER CC3IE LL_TIM_DisableIT_CC3 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE); +} + +/** + * @brief Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled. + * @rmtoll DIER CC3IE LL_TIM_IsEnabledIT_CC3 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 4 interrupt (CC4IE). + * @rmtoll DIER CC4IE LL_TIM_EnableIT_CC4 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC4IE); +} + +/** + * @brief Disable capture/compare 4 interrupt (CC4IE). + * @rmtoll DIER CC4IE LL_TIM_DisableIT_CC4 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE); +} + +/** + * @brief Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled. + * @rmtoll DIER CC4IE LL_TIM_IsEnabledIT_CC4 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL); +} + +/** + * @brief Enable commutation interrupt (COMIE). + * @rmtoll DIER COMIE LL_TIM_EnableIT_COM + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_COMIE); +} + +/** + * @brief Disable commutation interrupt (COMIE). + * @rmtoll DIER COMIE LL_TIM_DisableIT_COM + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE); +} + +/** + * @brief Indicates whether the commutation interrupt (COMIE) is enabled. + * @rmtoll DIER COMIE LL_TIM_IsEnabledIT_COM + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL); +} + +/** + * @brief Enable trigger interrupt (TIE). + * @rmtoll DIER TIE LL_TIM_EnableIT_TRIG + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_TIE); +} + +/** + * @brief Disable trigger interrupt (TIE). + * @rmtoll DIER TIE LL_TIM_DisableIT_TRIG + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE); +} + +/** + * @brief Indicates whether the trigger interrupt (TIE) is enabled. + * @rmtoll DIER TIE LL_TIM_IsEnabledIT_TRIG + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL); +} + +/** + * @brief Enable break interrupt (BIE). + * @rmtoll DIER BIE LL_TIM_EnableIT_BRK + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_BIE); +} + +/** + * @brief Disable break interrupt (BIE). + * @rmtoll DIER BIE LL_TIM_DisableIT_BRK + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE); +} + +/** + * @brief Indicates whether the break interrupt (BIE) is enabled. + * @rmtoll DIER BIE LL_TIM_IsEnabledIT_BRK + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_DMA_Management DMA Management + * @{ + */ +/** + * @brief Enable update DMA request (UDE). + * @rmtoll DIER UDE LL_TIM_EnableDMAReq_UPDATE + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_UDE); +} + +/** + * @brief Disable update DMA request (UDE). + * @rmtoll DIER UDE LL_TIM_DisableDMAReq_UPDATE + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE); +} + +/** + * @brief Indicates whether the update DMA request (UDE) is enabled. + * @rmtoll DIER UDE LL_TIM_IsEnabledDMAReq_UPDATE + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 1 DMA request (CC1DE). + * @rmtoll DIER CC1DE LL_TIM_EnableDMAReq_CC1 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC1DE); +} + +/** + * @brief Disable capture/compare 1 DMA request (CC1DE). + * @rmtoll DIER CC1DE LL_TIM_DisableDMAReq_CC1 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE); +} + +/** + * @brief Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled. + * @rmtoll DIER CC1DE LL_TIM_IsEnabledDMAReq_CC1 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 2 DMA request (CC2DE). + * @rmtoll DIER CC2DE LL_TIM_EnableDMAReq_CC2 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC2DE); +} + +/** + * @brief Disable capture/compare 2 DMA request (CC2DE). + * @rmtoll DIER CC2DE LL_TIM_DisableDMAReq_CC2 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE); +} + +/** + * @brief Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled. + * @rmtoll DIER CC2DE LL_TIM_IsEnabledDMAReq_CC2 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 3 DMA request (CC3DE). + * @rmtoll DIER CC3DE LL_TIM_EnableDMAReq_CC3 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC3DE); +} + +/** + * @brief Disable capture/compare 3 DMA request (CC3DE). + * @rmtoll DIER CC3DE LL_TIM_DisableDMAReq_CC3 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE); +} + +/** + * @brief Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled. + * @rmtoll DIER CC3DE LL_TIM_IsEnabledDMAReq_CC3 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL); +} + +/** + * @brief Enable capture/compare 4 DMA request (CC4DE). + * @rmtoll DIER CC4DE LL_TIM_EnableDMAReq_CC4 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_CC4DE); +} + +/** + * @brief Disable capture/compare 4 DMA request (CC4DE). + * @rmtoll DIER CC4DE LL_TIM_DisableDMAReq_CC4 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE); +} + +/** + * @brief Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled. + * @rmtoll DIER CC4DE LL_TIM_IsEnabledDMAReq_CC4 + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL); +} + +/** + * @brief Enable commutation DMA request (COMDE). + * @rmtoll DIER COMDE LL_TIM_EnableDMAReq_COM + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_COMDE); +} + +/** + * @brief Disable commutation DMA request (COMDE). + * @rmtoll DIER COMDE LL_TIM_DisableDMAReq_COM + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE); +} + +/** + * @brief Indicates whether the commutation DMA request (COMDE) is enabled. + * @rmtoll DIER COMDE LL_TIM_IsEnabledDMAReq_COM + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL); +} + +/** + * @brief Enable trigger interrupt (TDE). + * @rmtoll DIER TDE LL_TIM_EnableDMAReq_TRIG + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->DIER, TIM_DIER_TDE); +} + +/** + * @brief Disable trigger interrupt (TDE). + * @rmtoll DIER TDE LL_TIM_DisableDMAReq_TRIG + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx) +{ + CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE); +} + +/** + * @brief Indicates whether the trigger interrupt (TDE) is enabled. + * @rmtoll DIER TDE LL_TIM_IsEnabledDMAReq_TRIG + * @param TIMx Timer instance + * @retval State of bit (1 or 0). + */ +__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx) +{ + return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL); +} + +/** + * @} + */ + +/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management + * @{ + */ +/** + * @brief Generate an update event. + * @rmtoll EGR UG LL_TIM_GenerateEvent_UPDATE + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_UG); +} + +/** + * @brief Generate Capture/Compare 1 event. + * @rmtoll EGR CC1G LL_TIM_GenerateEvent_CC1 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_CC1G); +} + +/** + * @brief Generate Capture/Compare 2 event. + * @rmtoll EGR CC2G LL_TIM_GenerateEvent_CC2 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_CC2G); +} + +/** + * @brief Generate Capture/Compare 3 event. + * @rmtoll EGR CC3G LL_TIM_GenerateEvent_CC3 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_CC3G); +} + +/** + * @brief Generate Capture/Compare 4 event. + * @rmtoll EGR CC4G LL_TIM_GenerateEvent_CC4 + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_CC4G); +} + +/** + * @brief Generate commutation event. + * @rmtoll EGR COMG LL_TIM_GenerateEvent_COM + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_COMG); +} + +/** + * @brief Generate trigger event. + * @rmtoll EGR TG LL_TIM_GenerateEvent_TRIG + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_TG); +} + +/** + * @brief Generate break event. + * @rmtoll EGR BG LL_TIM_GenerateEvent_BRK + * @param TIMx Timer instance + * @retval None + */ +__STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx) +{ + SET_BIT(TIMx->EGR, TIM_EGR_BG); +} + +/** + * @} + */ + +#if defined(USE_FULL_LL_DRIVER) +/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions + * @{ + */ + +ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx); +void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct); +ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct); +void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct); +ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct); +void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); +ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct); +void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct); +ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct); +void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct); +ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct); +void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct); +ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct); +/** + * @} + */ +#endif /* USE_FULL_LL_DRIVER */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 */ + +/** + * @} + */ + +#ifdef __cplusplus +} +#endif + +#endif /* __STM32F1xx_LL_TIM_H */ diff --git a/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c new file mode 100644 index 0000000..c00a9de --- /dev/null +++ b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c @@ -0,0 +1,7629 @@ +/** + ****************************************************************************** + * @file stm32f1xx_hal_tim.c + * @author MCD Application Team + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer (TIM) peripheral: + * + TIM Time Base Initialization + * + TIM Time Base Start + * + TIM Time Base Start Interruption + * + TIM Time Base Start DMA + * + TIM Output Compare/PWM Initialization + * + TIM Output Compare/PWM Channel Configuration + * + TIM Output Compare/PWM Start + * + TIM Output Compare/PWM Start Interruption + * + TIM Output Compare/PWM Start DMA + * + TIM Input Capture Initialization + * + TIM Input Capture Channel Configuration + * + TIM Input Capture Start + * + TIM Input Capture Start Interruption + * + TIM Input Capture Start DMA + * + TIM One Pulse Initialization + * + TIM One Pulse Channel Configuration + * + TIM One Pulse Start + * + TIM Encoder Interface Initialization + * + TIM Encoder Interface Start + * + TIM Encoder Interface Start Interruption + * + TIM Encoder Interface Start DMA + * + Commutation Event configuration with Interruption and DMA + * + TIM OCRef clear configuration + * + TIM External Clock configuration + ****************************************************************************** + * @attention + * + * Copyright (c) 2016 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### TIMER Generic features ##### + ============================================================================== + [..] The Timer features include: + (#) 16-bit up, down, up/down auto-reload counter. + (#) 16-bit programmable prescaler allowing dividing (also on the fly) the + counter clock frequency either by any factor between 1 and 65536. + (#) Up to 4 independent channels for: + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to interconnect + several timers together. + (#) Supports incremental encoder for positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending on the selected feature: + (++) Time Base : HAL_TIM_Base_MspInit() + (++) Input Capture : HAL_TIM_IC_MspInit() + (++) Output Compare : HAL_TIM_OC_MspInit() + (++) PWM generation : HAL_TIM_PWM_MspInit() + (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Encoder mode output : HAL_TIM_Encoder_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + Initialization function of this driver: + (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base + (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an + Output Compare signal. + (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a + PWM signal. + (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an + external signal. + (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer + in One Pulse Mode. + (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. + + (#) Activate the TIM peripheral using one of the start functions depending from the feature used: + (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() + (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() + (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() + (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() + (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() + (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). + + (#) The DMA Burst is managed with the two following functions: + HAL_TIM_DMABurst_WriteStart() + HAL_TIM_DMABurst_ReadStart() + + *** Callback registration *** + ============================================= + + [..] + The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function HAL_TIM_RegisterCallback() to register a callback. + HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, + the Callback ID and a pointer to the user callback function. + + [..] + Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default + weak function. + HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, + and the Callback ID. + + [..] + These functions allow to register/unregister following callbacks: + (+) Base_MspInitCallback : TIM Base Msp Init Callback. + (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. + (+) IC_MspInitCallback : TIM IC Msp Init Callback. + (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. + (+) OC_MspInitCallback : TIM OC Msp Init Callback. + (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. + (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. + (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. + (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. + (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. + (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. + (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. + (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. + (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. + (+) PeriodElapsedCallback : TIM Period Elapsed Callback. + (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. + (+) TriggerCallback : TIM Trigger Callback. + (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. + (+) IC_CaptureCallback : TIM Input Capture Callback. + (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. + (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. + (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. + (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. + (+) ErrorCallback : TIM Error Callback. + (+) CommutationCallback : TIM Commutation Callback. + (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. + (+) BreakCallback : TIM Break Callback. + + [..] +By default, after the Init and when the state is HAL_TIM_STATE_RESET +all interrupt callbacks are set to the corresponding weak functions: + examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback(). + + [..] + Exception done for MspInit and MspDeInit functions that are reset to the legacy weak + functionalities in the Init / DeInit only when these callbacks are null + (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit + keep and use the user MspInit / MspDeInit callbacks(registered beforehand) + + [..] + Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. + Exception done MspInit / MspDeInit that can be registered / unregistered + in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, + thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_TIM_RegisterCallback() before calling DeInit or Init function. + + [..] + When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available and all callbacks + are set to the corresponding weak functions. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f1xx_hal.h" + +/** @addtogroup STM32F1xx_HAL_Driver + * @{ + */ + +/** @defgroup TIM TIM + * @brief TIM HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup TIM_Private_Functions + * @{ + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + const TIM_SlaveConfigTypeDef *sSlaveConfig); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup TIM_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions + * @brief Time Base functions + * +@verbatim + ============================================================================== + ##### Time Base functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM base. + (+) De-initialize the TIM base. + (+) Start the Time Base. + (+) Stop the Time Base. + (+) Start the Time Base and enable interrupt. + (+) Stop the Time Base and disable interrupt. + (+) Start the Time Base and enable DMA transfer. + (+) Stop the Time Base and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Time base Unit according to the specified + * parameters in the TIM_HandleTypeDef and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Base_MspInitCallback == NULL) + { + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Base_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the Time Base configuration */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Base peripheral + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Base_MspDeInitCallback == NULL) + { + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Base_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Base MSP. + * @param htim TIM Base handle + * @retval None + */ +__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Base_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Base MSP. + * @param htim TIM Base handle + * @retval None + */ +__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Base_MspDeInit could be implemented in the user file + */ +} + + +/** + * @brief Starts the TIM Base generation. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Check the TIM state */ + if (htim->State != HAL_TIM_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in interrupt mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Check the TIM state */ + if (htim->State != HAL_TIM_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Enable the TIM Update interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in interrupt mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Disable the TIM Update interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in DMA mode. + * @param htim TIM Base handle + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + if (htim->State == HAL_TIM_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->State == HAL_TIM_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + else + { + return HAL_ERROR; + } + + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Update DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in DMA mode. + * @param htim TIM Base handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); + + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions + * @brief TIM Output Compare functions + * +@verbatim + ============================================================================== + ##### TIM Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Output Compare. + (+) De-initialize the TIM Output Compare. + (+) Start the TIM Output Compare. + (+) Stop the TIM Output Compare. + (+) Start the TIM Output Compare and enable interrupt. + (+) Stop the TIM Output Compare and disable interrupt. + (+) Start the TIM Output Compare and enable DMA transfer. + (+) Stop the TIM Output Compare and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Output Compare according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() + * @param htim TIM Output Compare handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OC_MspInitCallback == NULL) + { + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OC_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the Output Compare */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM Output Compare handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OC_MspDeInitCallback == NULL) + { + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OC_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Output Compare MSP. + * @param htim TIM Output Compare handle + * @retval None + */ +__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Output Compare MSP. + * @param htim TIM Output Compare handle + * @retval None + */ +__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Output Compare signal generation. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Set the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions + * @brief TIM PWM functions + * +@verbatim + ============================================================================== + ##### TIM PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM PWM. + (+) De-initialize the TIM PWM. + (+) Start the TIM PWM. + (+) Stop the TIM PWM. + (+) Start the TIM PWM and enable interrupt. + (+) Stop the TIM PWM and disable interrupt. + (+) Start the TIM PWM and enable DMA transfer. + (+) Stop the TIM PWM and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM PWM Time Base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() + * @param htim TIM PWM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->PWM_MspInitCallback == NULL) + { + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->PWM_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the PWM */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM PWM handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->PWM_MspDeInitCallback == NULL) + { + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + } + /* DeInit the low level hardware */ + htim->PWM_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM MSP. + * @param htim TIM PWM handle + * @retval None + */ +__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM PWM MSP. + * @param htim TIM PWM handle + * @retval None + */ +__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the PWM signal generation. + * @param htim TIM handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode. + * @param htim TIM PWM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Set the TIM channel state */ + if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Capture/Compare 3 request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode. + * @param htim TIM PWM handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions + * @brief TIM Input Capture functions + * +@verbatim + ============================================================================== + ##### TIM Input Capture functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Input Capture. + (+) De-initialize the TIM Input Capture. + (+) Start the TIM Input Capture. + (+) Stop the TIM Input Capture. + (+) Start the TIM Input Capture and enable interrupt. + (+) Stop the TIM Input Capture and disable interrupt. + (+) Start the TIM Input Capture and enable DMA transfer. + (+) Stop the TIM Input Capture and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Input Capture Time base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() + * @param htim TIM Input Capture handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->IC_MspInitCallback == NULL) + { + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->IC_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Init the base time for the input capture */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim TIM Input Capture handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->IC_MspDeInitCallback == NULL) + { + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + } + /* DeInit the low level hardware */ + htim->IC_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Input Capture MSP. + * @param htim TIM Input Capture handle + * @retval None + */ +__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Input Capture MSP. + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Input Capture measurement. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement in interrupt mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM channel state */ + if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Input Capture measurement in interrupt mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM Input Capture measurement in DMA mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Set the TIM channel state */ + if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + case TIM_CHANNEL_4: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + break; + } + + default: + status = HAL_ERROR; + break; + } + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Input Capture measurement in DMA mode. + * @param htim TIM Input Capture handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions + * @brief TIM One Pulse functions + * +@verbatim + ============================================================================== + ##### TIM One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM One Pulse. + (+) De-initialize the TIM One Pulse. + (+) Start the TIM One Pulse. + (+) Stop the TIM One Pulse. + (+) Start the TIM One Pulse and enable interrupt. + (+) Stop the TIM One Pulse and disable interrupt. + (+) Start the TIM One Pulse and enable DMA transfer. + (+) Stop the TIM One Pulse and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM One Pulse Time Base according to the specified + * parameters in the TIM_HandleTypeDef and initializes the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() + * @note When the timer instance is initialized in One Pulse mode, timer + * channels 1 and channel 2 are reserved and cannot be used for other + * purpose. + * @param htim TIM One Pulse handle + * @param OnePulseMode Select the One pulse mode. + * This parameter can be one of the following values: + * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. + * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) +{ + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_OPM_MODE(OnePulseMode)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->OnePulse_MspInitCallback == NULL) + { + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->OnePulse_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OnePulse_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the One Pulse Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Reset the OPM Bit */ + htim->Instance->CR1 &= ~TIM_CR1_OPM; + + /* Configure the OPM Mode */ + htim->Instance->CR1 |= OnePulseMode; + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM One Pulse + * @param htim TIM One Pulse handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->OnePulse_MspDeInitCallback == NULL) + { + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + } + /* DeInit the low level hardware */ + htim->OnePulse_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_OnePulse_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse MSP. + * @param htim TIM One Pulse handle + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM One Pulse MSP. + * @param htim TIM One Pulse handle + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM One Pulse signal generation. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode. + * @note Though OutputChannel parameter is deprecated and ignored by the function + * it has been kept to avoid HAL_TIM API compatibility break. + * @note The pulse output channel is determined when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel See note above + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(OutputChannel); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions + * @brief TIM Encoder functions + * +@verbatim + ============================================================================== + ##### TIM Encoder functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Encoder. + (+) De-initialize the TIM Encoder. + (+) Start the TIM Encoder. + (+) Stop the TIM Encoder. + (+) Start the TIM Encoder and enable interrupt. + (+) Stop the TIM Encoder and disable interrupt. + (+) Start the TIM Encoder and enable DMA transfer. + (+) Stop the TIM Encoder and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Encoder Interface and initialize the associated handle. + * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) + * requires a timer reset to avoid unexpected direction + * due to DIR bit readonly in center aligned mode. + * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() + * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together + * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource + * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa + * @note When the timer instance is initialized in Encoder mode, timer + * channels 1 and channel 2 are reserved and cannot be used for other + * purpose. + * @param htim TIM Encoder Interface handle + * @param sConfig TIM Encoder Interface configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig) +{ + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy weak callbacks */ + TIM_ResetCallback(htim); + + if (htim->Encoder_MspInitCallback == NULL) + { + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->Encoder_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_Encoder_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Reset the SMS and ECE bits */ + htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = htim->Instance->CCMR1; + + /* Get the TIMx CCER register value */ + tmpccer = htim->Instance->CCER; + + /* Set the encoder Mode */ + tmpsmcr |= sConfig->EncoderMode; + + /* Select the Capture Compare 1 and the Capture Compare 2 as input */ + tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); + tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); + + /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ + tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); + tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); + tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); + tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); + + /* Set the TI1 and the TI2 Polarities */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); + tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Write to TIMx CCMR1 */ + htim->Instance->CCMR1 = tmpccmr1; + + /* Write to TIMx CCER */ + htim->Instance->CCER = tmpccer; + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + + +/** + * @brief DeInitializes the TIM Encoder interface + * @param htim TIM Encoder Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->Encoder_MspDeInitCallback == NULL) + { + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + } + /* DeInit the low level hardware */ + htim->Encoder_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Encoder_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Encoder Interface MSP. + * @param htim TIM Encoder Interface handle + * @retval None + */ +__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Encoder Interface MSP. + * @param htim TIM Encoder Interface handle + * @retval None + */ +__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Encoder Interface. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else if (Channel == TIM_CHANNEL_2) + { + if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + + /* Enable the encoder interface channels */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + } + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in interrupt mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else if (Channel == TIM_CHANNEL_2) + { + if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + + /* Enable the encoder interface channels */ + /* Enable the capture compare Interrupts 1 and/or 2 */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in interrupt mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if (Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + else if (Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 and 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in DMA mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @param pData1 The destination Buffer address for IC1. + * @param pData2 The destination Buffer address for IC2. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, + uint32_t *pData2, uint16_t Length) +{ + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel(s) state */ + if (Channel == TIM_CHANNEL_1) + { + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData1 == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + } + else if (Channel == TIM_CHANNEL_2) + { + if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData2 == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + } + else + { + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + break; + } + + default: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + break; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in DMA mode. + * @param htim TIM Encoder Interface handle + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if (Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + } + else if (Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 and 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel(s) state */ + if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) + { + TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ +/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief TIM IRQ handler management + * +@verbatim + ============================================================================== + ##### IRQ handler management ##### + ============================================================================== + [..] + This section provides Timer IRQ handler function. + +@endverbatim + * @{ + */ +/** + * @brief This function handles TIM interrupts requests. + * @param htim TIM handle + * @retval None + */ +void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) +{ + uint32_t itsource = htim->Instance->DIER; + uint32_t itflag = htim->Instance->SR; + + /* Capture compare 1 event */ + if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1)) + { + if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1)) + { + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC1); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + /* Input capture event */ + if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + } + /* Capture compare 2 event */ + if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2)) + { + if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC2); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + /* Input capture event */ + if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 3 event */ + if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3)) + { + if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC3); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + /* Input capture event */ + if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 4 event */ + if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4)) + { + if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC4); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + /* Input capture event */ + if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + /* Output compare event */ + else + { +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->OC_DelayElapsedCallback(htim); + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* TIM Update event */ + if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE)) + { + if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_UPDATE); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else + HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Break input event */ + if ((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK)) + { + if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->BreakCallback(htim); +#else + HAL_TIMEx_BreakCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM Trigger detection event */ + if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER)) + { + if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_TRIGGER); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else + HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } + /* TIM commutation event */ + if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM)) + { + if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM)) + { + __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_COM); +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + } +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions + * @brief TIM Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the TIM Output Compare Channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim TIM Output Compare handle + * @param sConfig TIM Output Compare configuration structure + * @param Channel TIM Channels to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, + const TIM_OC_InitTypeDef *sConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + + /* Process Locked */ + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 1 in Output Compare */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 2 in Output Compare */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 3 in Output Compare */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the TIM Channel 4 in Output Compare */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + break; + } + + default: + status = HAL_ERROR; + break; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Initializes the TIM Input Capture Channels according to the specified + * parameters in the TIM_IC_InitTypeDef. + * @param htim TIM IC handle + * @param sConfig TIM Input Capture configuration structure + * @param Channel TIM Channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); + assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); + + /* Process Locked */ + __HAL_LOCK(htim); + + if (Channel == TIM_CHANNEL_1) + { + /* TI1 Configuration */ + TIM_TI1_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_2) + { + /* TI2 Configuration */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Set the IC2PSC value */ + htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); + } + else if (Channel == TIM_CHANNEL_3) + { + /* TI3 Configuration */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + TIM_TI3_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC3PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; + + /* Set the IC3PSC value */ + htim->Instance->CCMR2 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_4) + { + /* TI4 Configuration */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + TIM_TI4_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC4PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; + + /* Set the IC4PSC value */ + htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); + } + else + { + status = HAL_ERROR; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Initializes the TIM PWM channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim TIM PWM handle + * @param sConfig TIM PWM configuration structure + * @param Channel TIM Channels to be configured + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, + const TIM_OC_InitTypeDef *sConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); + + /* Process Locked */ + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Configure the Channel 1 in PWM mode */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Configure the Channel 2 in PWM mode */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Configure the Channel 3 in PWM mode */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode; + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Configure the Channel 4 in PWM mode */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; + break; + } + + default: + status = HAL_ERROR; + break; + } + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Initializes the TIM One Pulse Channels according to the specified + * parameters in the TIM_OnePulse_InitTypeDef. + * @param htim TIM One Pulse handle + * @param sConfig TIM One Pulse configuration structure + * @param OutputChannel TIM output channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @param InputChannel TIM input Channel to configure + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @note To output a waveform with a minimum delay user can enable the fast + * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx + * output is forced in response to the edge detection on TIx input, + * without taking in account the comparison. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, + uint32_t OutputChannel, uint32_t InputChannel) +{ + HAL_StatusTypeDef status = HAL_OK; + TIM_OC_InitTypeDef temp1; + + /* Check the parameters */ + assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); + assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); + + if (OutputChannel != InputChannel) + { + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Extract the Output compare configuration from sConfig structure */ + temp1.OCMode = sConfig->OCMode; + temp1.Pulse = sConfig->Pulse; + temp1.OCPolarity = sConfig->OCPolarity; + temp1.OCNPolarity = sConfig->OCNPolarity; + temp1.OCIdleState = sConfig->OCIdleState; + temp1.OCNIdleState = sConfig->OCNIdleState; + + switch (OutputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_OC1_SetConfig(htim->Instance, &temp1); + break; + } + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_OC2_SetConfig(htim->Instance, &temp1); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + switch (InputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1FP1; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + break; + } + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI2FP2; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + break; + } + + default: + status = HAL_ERROR; + break; + } + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return status; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, + uint32_t BurstLength) +{ + HAL_StatusTypeDef status; + + status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, + ((BurstLength) >> 8U) + 1U); + + + + return status; +} + +/** + * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); + + if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) + { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) + { + return HAL_ERROR; + } + else + { + htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC4: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_COM: + { + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_TRIGGER: + { + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, + (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM DMA Burst mode + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } + case TIM_DMA_CC1: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + case TIM_DMA_CC2: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + case TIM_DMA_CC3: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + case TIM_DMA_CC4: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + case TIM_DMA_COM: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } + case TIM_DMA_TRIGGER: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @note This function should be used only when BurstLength is equal to DMA data transfer length. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) +{ + HAL_StatusTypeDef status; + + status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, + ((BurstLength) >> 8U) + 1U); + + + return status; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim TIM handle + * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read + * This parameter can be one of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @param BurstRequestSrc TIM DMA Request sources + * This parameter can be one of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer The Buffer address. + * @param BurstLength DMA Burst length. This parameter can be one value + * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @param DataLength Data length. This parameter can be one value + * between 1 and 0xFFFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, + uint32_t BurstRequestSrc, uint32_t *BurstBuffer, + uint32_t BurstLength, uint32_t DataLength) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); + + if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) + { + return HAL_BUSY; + } + else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) + { + if ((BurstBuffer == NULL) && (BurstLength > 0U)) + { + return HAL_ERROR; + } + else + { + htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; + } + } + else + { + /* nothing to do */ + } + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callbacks */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC1: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC2: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC3: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_CC4: + { + /* Set the DMA capture callbacks */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_COM: + { + /* Set the DMA commutation callbacks */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + case TIM_DMA_TRIGGER: + { + /* Set the DMA trigger callbacks */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, + DataLength) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Configure the DMA Burst Mode */ + htim->Instance->DCR = (BurstBaseAddress | BurstLength); + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + } + + /* Return function status */ + return status; +} + +/** + * @brief Stop the DMA burst reading + * @param htim TIM handle + * @param BurstRequestSrc TIM DMA Request sources to disable. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch (BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); + break; + } + case TIM_DMA_CC1: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + case TIM_DMA_CC2: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + case TIM_DMA_CC3: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + case TIM_DMA_CC4: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); + break; + } + case TIM_DMA_COM: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); + break; + } + case TIM_DMA_TRIGGER: + { + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); + break; + } + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Generate a software event + * @param htim TIM handle + * @param EventSource specifies the event source. + * This parameter can be one of the following values: + * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source + * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source + * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source + * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source + * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source + * @arg TIM_EVENTSOURCE_COM: Timer COM event source + * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source + * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source + * @note Basic timers can only generate an update event. + * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. + * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances + * supporting a break input. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_EVENT_SOURCE(EventSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the event sources */ + htim->Instance->EGR = EventSource; + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the OCRef clear feature + * @param htim TIM handle + * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that + * contains the OCREF clear feature and parameters for the TIM peripheral. + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, + const TIM_ClearInputConfigTypeDef *sClearInputConfig, + uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (sClearInputConfig->ClearInputSource) + { + case TIM_CLEARINPUTSOURCE_NONE: + { + /* Clear the OCREF clear selection bit and the the ETR Bits */ + CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); + break; + } + + case TIM_CLEARINPUTSOURCE_ETR: + { + /* Check the parameters */ + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ + if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + TIM_ETR_SetConfig(htim->Instance, + sClearInputConfig->ClearInputPrescaler, + sClearInputConfig->ClearInputPolarity, + sClearInputConfig->ClearInputFilter); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + switch (Channel) + { + case TIM_CHANNEL_1: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 1 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); + } + else + { + /* Disable the OCREF clear feature for Channel 1 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); + } + break; + } + case TIM_CHANNEL_2: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 2 */ + SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); + } + else + { + /* Disable the OCREF clear feature for Channel 2 */ + CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); + } + break; + } + case TIM_CHANNEL_3: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 3 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); + } + else + { + /* Disable the OCREF clear feature for Channel 3 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); + } + break; + } + case TIM_CHANNEL_4: + { + if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) + { + /* Enable the OCREF clear feature for Channel 4 */ + SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); + } + else + { + /* Disable the OCREF clear feature for Channel 4 */ + CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); + } + break; + } + default: + break; + } + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Configures the clock source to be used + * @param htim TIM handle + * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that + * contains the clock source information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); + + /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + htim->Instance->SMCR = tmpsmcr; + + switch (sClockSourceConfig->ClockSource) + { + case TIM_CLOCKSOURCE_INTERNAL: + { + assert_param(IS_TIM_INSTANCE(htim->Instance)); + break; + } + + case TIM_CLOCKSOURCE_ETRMODE1: + { + /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + + /* Select the External clock mode1 and the ETRF trigger */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + break; + } + + case TIM_CLOCKSOURCE_ETRMODE2: + { + /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); + + /* Check ETR input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Enable the External clock mode2 */ + htim->Instance->SMCR |= TIM_SMCR_ECE; + break; + } + + case TIM_CLOCKSOURCE_TI1: + { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); + break; + } + + case TIM_CLOCKSOURCE_TI2: + { + /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI2 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI2_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); + break; + } + + case TIM_CLOCKSOURCE_TI1ED: + { + /* Check whether or not the timer instance supports external clock mode 1 */ + assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); + + /* Check TI1 input conditioning related parameters */ + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); + break; + } + + case TIM_CLOCKSOURCE_ITR0: + case TIM_CLOCKSOURCE_ITR1: + case TIM_CLOCKSOURCE_ITR2: + case TIM_CLOCKSOURCE_ITR3: + { + /* Check whether or not the timer instance supports internal trigger input */ + assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); + + TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); + break; + } + + default: + status = HAL_ERROR; + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return status; +} + +/** + * @brief Selects the signal connected to the TI1 input: direct from CH1_input + * or a XOR combination between CH1_input, CH2_input & CH3_input + * @param htim TIM handle. + * @param TI1_Selection Indicate whether or not channel 1 is connected to the + * output of a XOR gate. + * This parameter can be one of the following values: + * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input + * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 + * pins are connected to the TI1 input (XOR combination) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) +{ + uint32_t tmpcr2; + + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Reset the TI1 selection */ + tmpcr2 &= ~TIM_CR2_TI1S; + + /* Set the TI1 selection */ + tmpcr2 |= TI1_Selection; + + /* Write to TIMxCR2 */ + htim->Instance->CR2 = tmpcr2; + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + /* Disable Trigger Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode in interrupt mode + * @param htim TIM handle. + * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the Slave mode + * (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, + const TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) + { + htim->State = HAL_TIM_STATE_READY; + __HAL_UNLOCK(htim); + return HAL_ERROR; + } + + /* Enable Trigger Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Read the captured value from Capture Compare unit + * @param htim TIM handle. + * @param Channel TIM Channels to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval Captured value + */ +uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpreg = 0U; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Return the capture 1 value */ + tmpreg = htim->Instance->CCR1; + + break; + } + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Return the capture 2 value */ + tmpreg = htim->Instance->CCR2; + + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Return the capture 3 value */ + tmpreg = htim->Instance->CCR3; + + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Return the capture 4 value */ + tmpreg = htim->Instance->CCR4; + + break; + } + + default: + break; + } + + return tmpreg; +} + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions + * +@verbatim + ============================================================================== + ##### TIM Callbacks functions ##### + ============================================================================== + [..] + This section provides TIM callback functions: + (+) TIM Period elapsed callback + (+) TIM Output Compare callback + (+) TIM Input capture callback + (+) TIM Trigger callback + (+) TIM Error callback + +@endverbatim + * @{ + */ + +/** + * @brief Period elapsed callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedCallback could be implemented in the user file + */ +} + +/** + * @brief Period elapsed half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Output Compare callback in non-blocking mode + * @param htim TIM OC handle + * @retval None + */ +__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureCallback could be implemented in the user file + */ +} + +/** + * @brief Input Capture half complete callback in non-blocking mode + * @param htim TIM IC handle + * @retval None + */ +__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Timer error callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIM_ErrorCallback could be implemented in the user file + */ +} + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User TIM callback to be used instead of the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @param pCallback pointer to the callback function + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, + pTIM_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + if (htim->State == HAL_TIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID : + htim->PeriodElapsedCallback = pCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : + htim->PeriodElapsedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_CB_ID : + htim->TriggerCallback = pCallback; + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID : + htim->TriggerHalfCpltCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_CB_ID : + htim->IC_CaptureCallback = pCallback; + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID : + htim->IC_CaptureHalfCpltCallback = pCallback; + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : + htim->OC_DelayElapsedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : + htim->PWM_PulseFinishedCallback = pCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : + htim->PWM_PulseFinishedHalfCpltCallback = pCallback; + break; + + case HAL_TIM_ERROR_CB_ID : + htim->ErrorCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_CB_ID : + htim->CommutationCallback = pCallback; + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID : + htim->CommutationHalfCpltCallback = pCallback; + break; + + case HAL_TIM_BREAK_CB_ID : + htim->BreakCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (htim->State == HAL_TIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + htim->Base_MspInitCallback = pCallback; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + htim->Base_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + htim->IC_MspInitCallback = pCallback; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + htim->IC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + htim->OC_MspInitCallback = pCallback; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + htim->OC_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + htim->PWM_MspInitCallback = pCallback; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + htim->PWM_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + htim->OnePulse_MspInitCallback = pCallback; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + htim->OnePulse_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + htim->Encoder_MspInitCallback = pCallback; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + htim->Encoder_MspDeInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + htim->HallSensor_MspInitCallback = pCallback; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + htim->HallSensor_MspDeInitCallback = pCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Unregister a TIM callback + * TIM callback is redirected to the weak predefined callback + * @param htim tim handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID + * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID + * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID + * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID + * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID + * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID + * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID + * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID + * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID + * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID + * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID + * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID + * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID + * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID + * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID + * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID + * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID + * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID + * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (htim->State == HAL_TIM_STATE_READY) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + /* Legacy weak Base MspInit Callback */ + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + /* Legacy weak Base Msp DeInit Callback */ + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + /* Legacy weak IC Msp Init Callback */ + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + /* Legacy weak IC Msp DeInit Callback */ + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + /* Legacy weak OC Msp Init Callback */ + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + /* Legacy weak OC Msp DeInit Callback */ + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + /* Legacy weak PWM Msp Init Callback */ + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + /* Legacy weak PWM Msp DeInit Callback */ + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + /* Legacy weak One Pulse Msp Init Callback */ + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + /* Legacy weak One Pulse Msp DeInit Callback */ + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + /* Legacy weak Encoder Msp Init Callback */ + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + /* Legacy weak Encoder Msp DeInit Callback */ + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + /* Legacy weak Hall Sensor Msp Init Callback */ + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + /* Legacy weak Hall Sensor Msp DeInit Callback */ + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + break; + + case HAL_TIM_PERIOD_ELAPSED_CB_ID : + /* Legacy weak Period Elapsed Callback */ + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; + break; + + case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : + /* Legacy weak Period Elapsed half complete Callback */ + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; + break; + + case HAL_TIM_TRIGGER_CB_ID : + /* Legacy weak Trigger Callback */ + htim->TriggerCallback = HAL_TIM_TriggerCallback; + break; + + case HAL_TIM_TRIGGER_HALF_CB_ID : + /* Legacy weak Trigger half complete Callback */ + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; + break; + + case HAL_TIM_IC_CAPTURE_CB_ID : + /* Legacy weak IC Capture Callback */ + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; + break; + + case HAL_TIM_IC_CAPTURE_HALF_CB_ID : + /* Legacy weak IC Capture half complete Callback */ + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; + break; + + case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : + /* Legacy weak OC Delay Elapsed Callback */ + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : + /* Legacy weak PWM Pulse Finished Callback */ + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; + break; + + case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : + /* Legacy weak PWM Pulse Finished half complete Callback */ + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; + break; + + case HAL_TIM_ERROR_CB_ID : + /* Legacy weak Error Callback */ + htim->ErrorCallback = HAL_TIM_ErrorCallback; + break; + + case HAL_TIM_COMMUTATION_CB_ID : + /* Legacy weak Commutation Callback */ + htim->CommutationCallback = HAL_TIMEx_CommutCallback; + break; + + case HAL_TIM_COMMUTATION_HALF_CB_ID : + /* Legacy weak Commutation half complete Callback */ + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; + break; + + case HAL_TIM_BREAK_CB_ID : + /* Legacy weak Break Callback */ + htim->BreakCallback = HAL_TIMEx_BreakCallback; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (htim->State == HAL_TIM_STATE_RESET) + { + switch (CallbackID) + { + case HAL_TIM_BASE_MSPINIT_CB_ID : + /* Legacy weak Base MspInit Callback */ + htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; + break; + + case HAL_TIM_BASE_MSPDEINIT_CB_ID : + /* Legacy weak Base Msp DeInit Callback */ + htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; + break; + + case HAL_TIM_IC_MSPINIT_CB_ID : + /* Legacy weak IC Msp Init Callback */ + htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; + break; + + case HAL_TIM_IC_MSPDEINIT_CB_ID : + /* Legacy weak IC Msp DeInit Callback */ + htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; + break; + + case HAL_TIM_OC_MSPINIT_CB_ID : + /* Legacy weak OC Msp Init Callback */ + htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; + break; + + case HAL_TIM_OC_MSPDEINIT_CB_ID : + /* Legacy weak OC Msp DeInit Callback */ + htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; + break; + + case HAL_TIM_PWM_MSPINIT_CB_ID : + /* Legacy weak PWM Msp Init Callback */ + htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; + break; + + case HAL_TIM_PWM_MSPDEINIT_CB_ID : + /* Legacy weak PWM Msp DeInit Callback */ + htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; + break; + + case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : + /* Legacy weak One Pulse Msp Init Callback */ + htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; + break; + + case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : + /* Legacy weak One Pulse Msp DeInit Callback */ + htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; + break; + + case HAL_TIM_ENCODER_MSPINIT_CB_ID : + /* Legacy weak Encoder Msp Init Callback */ + htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; + break; + + case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : + /* Legacy weak Encoder Msp DeInit Callback */ + htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : + /* Legacy weak Hall Sensor Msp Init Callback */ + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + break; + + case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : + /* Legacy weak Hall Sensor Msp DeInit Callback */ + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + break; + + default : + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Return error status */ + status = HAL_ERROR; + } + + return status; +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions + * @brief TIM Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Base handle state. + * @param htim TIM Base handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM OC handle state. + * @param htim TIM Output Compare handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM PWM handle state. + * @param htim TIM handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Input Capture handle state. + * @param htim TIM IC handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM One Pulse Mode handle state. + * @param htim TIM OPM handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM Encoder Interface handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode handle state. + * @param htim TIM handle + * @retval Active channel + */ +HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim) +{ + return htim->Channel; +} + +/** + * @brief Return actual state of the TIM channel. + * @param htim TIM handle + * @param Channel TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @arg TIM_CHANNEL_5: TIM Channel 5 + * @arg TIM_CHANNEL_6: TIM Channel 6 + * @retval TIM Channel state + */ +HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_TIM_ChannelStateTypeDef channel_state; + + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); + + return channel_state; +} + +/** + * @brief Return actual state of a DMA burst operation. + * @param htim TIM handle + * @retval DMA burst state + */ +HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + + return htim->DMABurstState; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup TIM_Private_Functions TIM Private Functions + * @{ + */ + +/** + * @brief TIM DMA error callback + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMAError(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + htim->State = HAL_TIM_STATE_READY; + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else + HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Delay Pulse complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Delay Pulse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedHalfCpltCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); + } + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureCallback(htim); +#else + HAL_TIM_IC_CaptureCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Capture half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->IC_CaptureHalfCpltCallback(htim); +#else + HAL_TIM_IC_CaptureHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA Period Elapse complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) + { + htim->State = HAL_TIM_STATE_READY; + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedCallback(htim); +#else + HAL_TIM_PeriodElapsedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Period Elapse half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PeriodElapsedHalfCpltCallback(htim); +#else + HAL_TIM_PeriodElapsedHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) + { + htim->State = HAL_TIM_STATE_READY; + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerCallback(htim); +#else + HAL_TIM_TriggerCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Trigger half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->TriggerHalfCpltCallback(htim); +#else + HAL_TIM_TriggerHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief Time Base configuration + * @param TIMx TIM peripheral + * @param Structure TIM Base configuration structure + * @retval None + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure) +{ + uint32_t tmpcr1; + tmpcr1 = TIMx->CR1; + + /* Set TIM Time Base Unit parameters ---------------------------------------*/ + if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) + { + /* Select the Counter Mode */ + tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); + tmpcr1 |= Structure->CounterMode; + } + + if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) + { + /* Set the clock division */ + tmpcr1 &= ~TIM_CR1_CKD; + tmpcr1 |= (uint32_t)Structure->ClockDivision; + } + + /* Set the auto-reload preload */ + MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); + + TIMx->CR1 = tmpcr1; + + /* Set the Autoreload value */ + TIMx->ARR = (uint32_t)Structure->Period ; + + /* Set the Prescaler value */ + TIMx->PSC = Structure->Prescaler; + + if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) + { + /* Set the Repetition Counter value */ + TIMx->RCR = Structure->RepetitionCounter; + } + + /* Generate an update event to reload the Prescaler + and the repetition counter (only for advanced timer) value immediately */ + TIMx->EGR = TIM_EGR_UG; + + /* Check if the update flag is set after the Update Generation, if so clear the UIF flag */ + if (HAL_IS_BIT_SET(TIMx->SR, TIM_FLAG_UPDATE)) + { + /* Clear the update flag */ + CLEAR_BIT(TIMx->SR, TIM_FLAG_UPDATE); + } +} + +/** + * @brief Timer Output Compare 1 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~TIM_CCMR1_OC1M; + tmpccmrx &= ~TIM_CCMR1_CC1S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC1P; + /* Set the Output Compare Polarity */ + tmpccer |= OC_Config->OCPolarity; + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) + { + /* Check parameters */ + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC1NP; + /* Set the Output N Polarity */ + tmpccer |= OC_Config->OCNPolarity; + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC1NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS1; + tmpcr2 &= ~TIM_CR2_OIS1N; + /* Set the Output Idle state */ + tmpcr2 |= OC_Config->OCIdleState; + /* Set the Output N Idle state */ + tmpcr2 |= OC_Config->OCNIdleState; + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR1 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 2 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR1_OC2M; + tmpccmrx &= ~TIM_CCMR1_CC2S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC2P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 4U); + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC2NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 4U); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC2NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS2; + tmpcr2 &= ~TIM_CR2_OIS2N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 2U); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 2U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR2 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 3 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 3: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC3M; + tmpccmrx &= ~TIM_CCMR2_CC3S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC3P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 8U); + + if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC3NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 8U); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC3NE; + } + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS3; + tmpcr2 &= ~TIM_CR2_OIS3N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 4U); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 4U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR3 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Timer Output Compare 4 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config The output configuration structure + * @retval None + */ +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx; + uint32_t tmpccer; + uint32_t tmpcr2; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC4M; + tmpccmrx &= ~TIM_CCMR2_CC4S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8U); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC4P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 12U); + + if (IS_TIM_BREAK_INSTANCE(TIMx)) + { + /* Check parameters */ + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS4; + + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 6U); + } + + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR4 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Slave Timer configuration function + * @param htim TIM handle + * @param sSlaveConfig Slave timer configuration + * @retval None + */ +static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + const TIM_SlaveConfigTypeDef *sSlaveConfig) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the Trigger Selection Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source */ + tmpsmcr |= sSlaveConfig->InputTrigger; + + /* Reset the slave mode Bits */ + tmpsmcr &= ~TIM_SMCR_SMS; + /* Set the slave mode */ + tmpsmcr |= sSlaveConfig->SlaveMode; + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Configure the trigger prescaler, filter, and polarity */ + switch (sSlaveConfig->InputTrigger) + { + case TIM_TS_ETRF: + { + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + /* Configure the ETR Trigger source */ + TIM_ETR_SetConfig(htim->Instance, + sSlaveConfig->TriggerPrescaler, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_TI1F_ED: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) + { + return HAL_ERROR; + } + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = htim->Instance->CCER; + htim->Instance->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = htim->Instance->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); + + /* Write to TIMx CCMR1 and CCER registers */ + htim->Instance->CCMR1 = tmpccmr1; + htim->Instance->CCER = tmpccer; + break; + } + + case TIM_TS_TI1FP1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI1 Filter and Polarity */ + TIM_TI1_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_TI2FP2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI2 Filter and Polarity */ + TIM_TI2_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + break; + } + + case TIM_TS_ITR0: + case TIM_TS_ITR1: + case TIM_TS_ITR2: + case TIM_TS_ITR3: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + break; + } + + default: + status = HAL_ERROR; + break; + } + + return status; +} + +/** + * @brief Configure the TI1 as Input. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 + * (on channel2 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Select the Input */ + if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) + { + tmpccmr1 &= ~TIM_CCMR1_CC1S; + tmpccmr1 |= TIM_ICSelection; + } + else + { + tmpccmr1 |= TIM_CCMR1_CC1S_0; + } + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI1. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= (TIM_ICFilter << 4U); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= TIM_ICPolarity; + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI2 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. + * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 + * (on channel1 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 2: Reset the CC2E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + + /* Select the Input */ + tmpccmr1 &= ~TIM_CCMR1_CC2S; + tmpccmr1 |= (TIM_ICSelection << 8U); + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI2. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @arg TIM_ICPOLARITY_BOTHEDGE + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1; + uint32_t tmpccer; + + /* Disable the Channel 2: Reset the CC2E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= (TIM_ICFilter << 12U); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (TIM_ICPolarity << 4U); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI3 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + */ +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + + /* Disable the Channel 3: Reset the CC3E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC3E; + tmpccmr2 = TIMx->CCMR2; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC3S; + tmpccmr2 |= TIM_ICSelection; + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC3F; + tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); + + /* Select the Polarity and set the CC3E Bit */ + tmpccer &= ~(TIM_CCER_CC3P); + tmpccer |= ((TIM_ICPolarity << 8U) & TIM_CCER_CC3P); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI4 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPOLARITY_RISING + * @arg TIM_ICPOLARITY_FALLING + * @param TIM_ICSelection specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. + * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. + * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. + * @param TIM_ICFilter Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 + * (on channel1 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2; + uint32_t tmpccer; + + /* Disable the Channel 4: Reset the CC4E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC4E; + tmpccmr2 = TIMx->CCMR2; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC4S; + tmpccmr2 |= (TIM_ICSelection << 8U); + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC4F; + tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); + + /* Select the Polarity and set the CC4E Bit */ + tmpccer &= ~(TIM_CCER_CC4P); + tmpccer |= ((TIM_ICPolarity << 12U) & TIM_CCER_CC4P); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer ; +} + +/** + * @brief Selects the Input Trigger source + * @param TIMx to select the TIM peripheral + * @param InputTriggerSource The Input Trigger source. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal Trigger 0 + * @arg TIM_TS_ITR1: Internal Trigger 1 + * @arg TIM_TS_ITR2: Internal Trigger 2 + * @arg TIM_TS_ITR3: Internal Trigger 3 + * @arg TIM_TS_TI1F_ED: TI1 Edge Detector + * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 + * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 + * @arg TIM_TS_ETRF: External Trigger input + * @retval None + */ +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) +{ + uint32_t tmpsmcr; + + /* Get the TIMx SMCR register value */ + tmpsmcr = TIMx->SMCR; + /* Reset the TS Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source and the slave mode*/ + tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} +/** + * @brief Configures the TIMx External Trigger (ETR). + * @param TIMx to select the TIM peripheral + * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. + * This parameter can be one of the following values: + * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. + * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. + * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. + * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. + * @param TIM_ExtTRGPolarity The external Trigger Polarity. + * This parameter can be one of the following values: + * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. + * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. + * @param ExtTRGFilter External Trigger Filter. + * This parameter must be a value between 0x00 and 0x0F + * @retval None + */ +void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) +{ + uint32_t tmpsmcr; + + tmpsmcr = TIMx->SMCR; + + /* Reset the ETR Bits */ + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + + /* Set the Prescaler, the Filter value and the Polarity */ + tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); + + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel x. + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @arg TIM_CHANNEL_4: TIM Channel 4 + * @param ChannelState specifies the TIM Channel CCxE bit new state. + * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. + * @retval None + */ +void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) +{ + uint32_t tmp; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_TIM_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ + + /* Reset the CCxE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxE Bit */ + TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ +} + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) +/** + * @brief Reset interrupt callbacks to the legacy weak callbacks. + * @param htim pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +void TIM_ResetCallback(TIM_HandleTypeDef *htim) +{ + /* Reset the TIM callback to the legacy weak callbacks */ + htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; + htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; + htim->TriggerCallback = HAL_TIM_TriggerCallback; + htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; + htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; + htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; + htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; + htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; + htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; + htim->ErrorCallback = HAL_TIM_ErrorCallback; + htim->CommutationCallback = HAL_TIMEx_CommutCallback; + htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; + htim->BreakCallback = HAL_TIMEx_BreakCallback; +} +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c new file mode 100644 index 0000000..8a565a6 --- /dev/null +++ b/stm32f103_lcds_st75256/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c @@ -0,0 +1,2359 @@ +/** + ****************************************************************************** + * @file stm32f1xx_hal_tim_ex.c + * @author MCD Application Team + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer Extended peripheral: + * + Time Hall Sensor Interface Initialization + * + Time Hall Sensor Interface Start + * + Time Complementary signal break and dead time configuration + * + Time Master and Slave synchronization configuration + * + Timer remapping capabilities configuration + ****************************************************************************** + * @attention + * + * Copyright (c) 2016 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### TIMER Extended features ##### + ============================================================================== + [..] + The Timer Extended features include: + (#) Complementary outputs with programmable dead-time for : + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to + interconnect several timers together. + (#) Break input to put the timer output signals in reset state or in a known state. + (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for + positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending on the selected feature: + (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + initialization function of this driver: + (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the + Timer Hall Sensor Interface and the commutation event with the corresponding + Interrupt and DMA request if needed (Note that One Timer is used to interface + with the Hall sensor Interface and another Timer should be used to use + the commutation event). + + (#) Activate the TIM peripheral using one of the start functions: + (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), + HAL_TIMEx_OCN_Start_IT() + (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), + HAL_TIMEx_PWMN_Start_IT() + (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() + (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), + HAL_TIMEx_HallSensor_Start_IT(). + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f1xx_hal.h" + +/** @addtogroup STM32F1xx_HAL_Driver + * @{ + */ + +/** @defgroup TIMEx TIMEx + * @brief TIM Extended HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma); +static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState); + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions + * @{ + */ + +/** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions + * @brief Timer Hall Sensor functions + * +@verbatim + ============================================================================== + ##### Timer Hall Sensor functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure TIM HAL Sensor. + (+) De-initialize TIM HAL Sensor. + (+) Start the Hall Sensor Interface. + (+) Stop the Hall Sensor Interface. + (+) Start the Hall Sensor Interface and enable interrupts. + (+) Stop the Hall Sensor Interface and disable interrupts. + (+) Start the Hall Sensor Interface and enable DMA transfers. + (+) Stop the Hall Sensor Interface and disable DMA transfers. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle. + * @note When the timer instance is initialized in Hall Sensor Interface mode, + * timer channels 1 and channel 2 are reserved and cannot be used for + * other purpose. + * @param htim TIM Hall Sensor Interface handle + * @param sConfig TIM Hall Sensor configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig) +{ + TIM_OC_InitTypeDef OC_Config; + + /* Check the TIM handle allocation */ + if (htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_PERIOD(htim->Init.Period)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + + if (htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + /* Reset interrupt callbacks to legacy week callbacks */ + TIM_ResetCallback(htim); + + if (htim->HallSensor_MspInitCallback == NULL) + { + htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; + } + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + htim->HallSensor_MspInitCallback(htim); +#else + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIMEx_HallSensor_MspInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + } + + /* Set the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ + TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->IC1Prescaler; + + /* Enable the Hall sensor interface (XOR function of the three inputs) */ + htim->Instance->CR2 |= TIM_CR2_TI1S; + + /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1F_ED; + + /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; + + /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ + OC_Config.OCFastMode = TIM_OCFAST_DISABLE; + OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; + OC_Config.OCMode = TIM_OCMODE_PWM2; + OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; + OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; + OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; + OC_Config.Pulse = sConfig->Commutation_Delay; + + TIM_OC2_SetConfig(htim->Instance, &OC_Config); + + /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 + register to 101 */ + htim->Instance->CR2 &= ~TIM_CR2_MMS; + htim->Instance->CR2 |= TIM_TRGO_OC2REF; + + /* Initialize the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_READY; + + /* Initialize the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Initialize the TIM state*/ + htim->State = HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Hall Sensor interface + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + if (htim->HallSensor_MspDeInitCallback == NULL) + { + htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; + } + /* DeInit the low level hardware */ + htim->HallSensor_MspDeInitCallback(htim); +#else + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIMEx_HallSensor_MspDeInit(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + /* Change the DMA burst operation state */ + htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; + + /* Change the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Hall Sensor MSP. + * @param htim TIM Hall Sensor Interface handle + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Hall Sensor MSP. + * @param htim TIM Hall Sensor Interface handle + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Hall Sensor Interface. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall sensor Interface. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1, 2 and 3 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in interrupt mode. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the capture compare Interrupts 1 event */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in interrupt mode. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts event */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in DMA mode. + * @param htim TIM Hall Sensor Interface handle + * @param pData The destination Buffer address. + * @param Length The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + uint32_t tmpsmcr; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Set the TIM channel state */ + if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) + || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) + { + return HAL_BUSY; + } + else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) + && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + /* Enable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Set the DMA Input Capture 1 Callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA channel for Capture 1*/ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the capture compare 1 Interrupt */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in DMA mode. + * @param htim TIM Hall Sensor Interface handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channel 1 + (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, + TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + + /* Disable the capture compare Interrupts 1 event */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channel state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions + * +@verbatim + ============================================================================== + ##### Timer Complementary Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary Output Compare/PWM. + (+) Stop the Complementary Output Compare/PWM. + (+) Start the Complementary Output Compare/PWM and enable interrupts. + (+) Stop the Complementary Output Compare/PWM and disable interrupts. + (+) Start the Complementary Output Compare/PWM and enable DMA transfers. + (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM Output Compare signal generation on the complementary + * output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation on the complementary + * output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim TIM OC handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + tmpccer = htim->Instance->CCER; + if ((tmpccer & TIM_CCER_CCxNE_MASK) == (uint32_t)RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Set the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim TIM Output Compare handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions + * @brief Timer Complementary PWM functions + * +@verbatim + ============================================================================== + ##### Timer Complementary PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary PWM. + (+) Stop the Complementary PWM. + (+) Start the Complementary PWM and enable interrupts. + (+) Stop the Complementary PWM and disable interrupts. + (+) Start the Complementary PWM and enable DMA transfers. + (+) Stop the Complementary PWM and disable DMA transfers. +@endverbatim + * @{ + */ + +/** + * @brief Starts the PWM signal generation on the complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation on the complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Check the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) + { + return HAL_ERROR; + } + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpccer; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + tmpccer = htim->Instance->CCER; + if ((tmpccer & TIM_CCER_CCxNE_MASK) == (uint32_t)RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode on the + * complementary output + * @param htim TIM handle + * @param Channel TIM Channel to be enabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @param pData The source Buffer address. + * @param Length The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, + uint16_t Length) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Set the TIM complementary channel state */ + if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) + { + return HAL_BUSY; + } + else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) + { + if ((pData == NULL) || (Length == 0U)) + { + return HAL_ERROR; + } + else + { + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); + } + } + else + { + return HAL_ERROR; + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + break; + } + + case TIM_CHANNEL_2: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + break; + } + + case TIM_CHANNEL_3: + { + /* Set the DMA compare callbacks */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; + htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; + + /* Enable the DMA channel */ + if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, + Length) != HAL_OK) + { + /* Return error status */ + return HAL_ERROR; + } + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; + if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) + { + __HAL_TIM_ENABLE(htim); + } + } + else + { + __HAL_TIM_ENABLE(htim); + } + } + + /* Return function status */ + return status; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode on the complementary + * output + * @param htim TIM handle + * @param Channel TIM Channel to be disabled + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); + break; + } + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); + break; + } + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); + break; + } + + default: + status = HAL_ERROR; + break; + } + + if (status == HAL_OK) + { + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM complementary channel state */ + TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); + } + + /* Return function status */ + return status; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions + * +@verbatim + ============================================================================== + ##### Timer Complementary One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary One Pulse generation. + (+) Stop the Complementary One Pulse. + (+) Start the Complementary One Pulse and enable interrupts. + (+) Stop the Complementary One Pulse and disable interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM One Pulse signal generation on the complementary + * output. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to enable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation on the complementary + * output. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to disable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to enable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); + HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); + HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Check the TIM channels state */ + if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) + || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) + { + return HAL_ERROR; + } + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + /* Enable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @note OutputChannel must match the pulse output channel chosen when calling + * @ref HAL_TIM_OnePulse_ConfigChannel(). + * @param htim TIM One Pulse handle + * @param OutputChannel pulse output channel to disable + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the complementary One Pulse output channel and the Input Capture channel */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Set the TIM channels state */ + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure the commutation event in case of use of the Hall sensor interface. + (+) Configure Output channels for OC and PWM mode. + + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master synchronization. + (+) Configure timer remapping capabilities. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the TIM commutation event sequence. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource the Commutation Event source + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Disable Commutation Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); + + /* Disable Commutation DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with interrupt. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource the Commutation Event source + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Disable Commutation DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); + + /* Enable the Commutation Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with DMA. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set + * @param htim TIM handle + * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource the Commutation Event source + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, + uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Enable the Commutation DMA Request */ + /* Set the DMA Commutation Callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; + + /* Disable Commutation Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); + + /* Enable the Commutation DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in master mode. + * @param htim TIM handle. + * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that + * contains the selected trigger output (TRGO) and the Master/Slave + * mode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, + const TIM_MasterConfigTypeDef *sMasterConfig) +{ + uint32_t tmpcr2; + uint32_t tmpsmcr; + + /* Check the parameters */ + assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); + assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); + + /* Check input state */ + __HAL_LOCK(htim); + + /* Change the handler state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the MMS Bits */ + tmpcr2 &= ~TIM_CR2_MMS; + /* Select the TRGO source */ + tmpcr2 |= sMasterConfig->MasterOutputTrigger; + + /* Update TIMx CR2 */ + htim->Instance->CR2 = tmpcr2; + + if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) + { + /* Reset the MSM Bit */ + tmpsmcr &= ~TIM_SMCR_MSM; + /* Set master mode */ + tmpsmcr |= sMasterConfig->MasterSlaveMode; + + /* Update TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + } + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State + * and the AOE(automatic output enable). + * @param htim TIM handle + * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that + * contains the BDTR Register configuration information for the TIM peripheral. + * @note Interrupts can be generated when an active level is detected on the + * break input, the break 2 input or the system break input. Break + * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, + const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) +{ + /* Keep this variable initialized to 0 as it is used to configure BDTR register */ + uint32_t tmpbdtr = 0U; + + /* Check the parameters */ + assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); + assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); + assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); + assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); + assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); + assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); + assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); + assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); + + /* Check input state */ + __HAL_LOCK(htim); + + /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, + the OSSI State, the dead time value and the Automatic Output Enable Bit */ + + /* Set the BDTR bits */ + MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime); + MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel); + MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode); + MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); + MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); + MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); + + + /* Set TIMx_BDTR */ + htim->Instance->BDTR = tmpbdtr; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIMx Remapping input capabilities. + * @param htim TIM handle. + * @param Remap specifies the TIM remapping source. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + UNUSED(Remap); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions + * @brief Extended Callbacks functions + * +@verbatim + ============================================================================== + ##### Extended Callbacks functions ##### + ============================================================================== + [..] + This section provides Extended TIM callback functions: + (+) Timer Commutation callback + (+) Timer Break callback + +@endverbatim + * @{ + */ + +/** + * @brief Commutation callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_CommutCallback could be implemented in the user file + */ +} +/** + * @brief Commutation half complete callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Break detection callback in non-blocking mode + * @param htim TIM handle + * @retval None + */ +__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(htim); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_TIMEx_BreakCallback could be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions + * @brief Extended Peripheral State functions + * +@verbatim + ============================================================================== + ##### Extended Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Hall Sensor interface handle state. + * @param htim TIM Hall Sensor handle + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return actual state of the TIM complementary channel. + * @param htim TIM handle + * @param ChannelN TIM Complementary channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @retval TIM Complementary channel state + */ +HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN) +{ + HAL_TIM_ChannelStateTypeDef channel_state; + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN)); + + channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN); + + return channel_state; +} +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @defgroup TIMEx_Private_Functions TIM Extended Private Functions + * @{ + */ + +/** + * @brief TIM DMA Commutation callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationCallback(htim); +#else + HAL_TIMEx_CommutCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + +/** + * @brief TIM DMA Commutation half complete callback. + * @param hdma pointer to DMA handle. + * @retval None + */ +void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->CommutationHalfCpltCallback(htim); +#else + HAL_TIMEx_CommutHalfCpltCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ +} + + +/** + * @brief TIM DMA Delay Pulse complete callback (complementary channel). + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + + if (hdma->Init.Mode == DMA_NORMAL) + { + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->PWM_PulseFinishedCallback(htim); +#else + HAL_TIM_PWM_PulseFinishedCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA error callback (complementary channel) + * @param hdma pointer to DMA handle. + * @retval None + */ +static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + if (hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); + } + else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); + } + else + { + /* nothing to do */ + } + +#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) + htim->ErrorCallback(htim); +#else + HAL_TIM_ErrorCallback(htim); +#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel xN. + * @param TIMx to select the TIM peripheral + * @param Channel specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 + * @arg TIM_CHANNEL_2: TIM Channel 2 + * @arg TIM_CHANNEL_3: TIM Channel 3 + * @param ChannelNState specifies the TIM Channel CCxNE bit new state. + * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. + * @retval None + */ +static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) +{ + uint32_t tmp; + + tmp = TIM_CCER_CC1NE << (Channel & 0xFU); /* 0xFU = 15 bits max shift */ + + /* Reset the CCxNE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxNE Bit */ + TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0xFU)); /* 0xFU = 15 bits max shift */ +} +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ diff --git a/stm32f103_lcds_st75256/stm32f103_lcds_st75256.ioc b/stm32f103_lcds_st75256/stm32f103_lcds_st75256.ioc index e3f4767..6232f47 100644 --- a/stm32f103_lcds_st75256/stm32f103_lcds_st75256.ioc +++ b/stm32f103_lcds_st75256/stm32f103_lcds_st75256.ioc @@ -3,7 +3,9 @@ CAD.formats= CAD.pinconfig= CAD.provider= Dma.Request0=SPI1_TX -Dma.RequestsNb=1 +Dma.Request1=SPI2_RX +Dma.Request2=SPI2_TX +Dma.RequestsNb=3 Dma.SPI1_TX.0.Direction=DMA_MEMORY_TO_PERIPH Dma.SPI1_TX.0.Instance=DMA1_Channel3 Dma.SPI1_TX.0.MemDataAlignment=DMA_MDATAALIGN_BYTE @@ -13,8 +15,26 @@ Dma.SPI1_TX.0.PeriphDataAlignment=DMA_PDATAALIGN_BYTE Dma.SPI1_TX.0.PeriphInc=DMA_PINC_DISABLE Dma.SPI1_TX.0.Priority=DMA_PRIORITY_HIGH Dma.SPI1_TX.0.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority +Dma.SPI2_RX.1.Direction=DMA_PERIPH_TO_MEMORY +Dma.SPI2_RX.1.Instance=DMA1_Channel4 +Dma.SPI2_RX.1.MemDataAlignment=DMA_MDATAALIGN_BYTE +Dma.SPI2_RX.1.MemInc=DMA_MINC_ENABLE +Dma.SPI2_RX.1.Mode=DMA_NORMAL +Dma.SPI2_RX.1.PeriphDataAlignment=DMA_PDATAALIGN_BYTE +Dma.SPI2_RX.1.PeriphInc=DMA_PINC_DISABLE +Dma.SPI2_RX.1.Priority=DMA_PRIORITY_LOW +Dma.SPI2_RX.1.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority +Dma.SPI2_TX.2.Direction=DMA_MEMORY_TO_PERIPH +Dma.SPI2_TX.2.Instance=DMA1_Channel5 +Dma.SPI2_TX.2.MemDataAlignment=DMA_MDATAALIGN_BYTE +Dma.SPI2_TX.2.MemInc=DMA_MINC_ENABLE +Dma.SPI2_TX.2.Mode=DMA_NORMAL +Dma.SPI2_TX.2.PeriphDataAlignment=DMA_PDATAALIGN_BYTE +Dma.SPI2_TX.2.PeriphInc=DMA_PINC_DISABLE +Dma.SPI2_TX.2.Priority=DMA_PRIORITY_LOW +Dma.SPI2_TX.2.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority File.Version=6 -GPIO.groupedBy= +GPIO.groupedBy=Group By Peripherals KeepUserPlacement=false Mcu.CPN=STM32F103C8T6 Mcu.Family=STM32F1 @@ -22,27 +42,37 @@ Mcu.IP0=DMA Mcu.IP1=NVIC Mcu.IP2=RCC Mcu.IP3=SPI1 -Mcu.IP4=SYS -Mcu.IPNb=5 +Mcu.IP4=SPI2 +Mcu.IP5=SYS +Mcu.IP6=TIM4 +Mcu.IPNb=7 Mcu.Name=STM32F103C(8-B)Tx Mcu.Package=LQFP48 -Mcu.Pin0=PD0-OSC_IN -Mcu.Pin1=PD1-OSC_OUT -Mcu.Pin2=PA4 -Mcu.Pin3=PA5 -Mcu.Pin4=PA6 -Mcu.Pin5=PA7 -Mcu.Pin6=PA13 -Mcu.Pin7=PA14 -Mcu.Pin8=VP_SYS_VS_Systick -Mcu.PinsNb=9 +Mcu.Pin0=PC13-TAMPER-RTC +Mcu.Pin1=PD0-OSC_IN +Mcu.Pin10=PB15 +Mcu.Pin11=PA13 +Mcu.Pin12=PA14 +Mcu.Pin13=VP_SYS_VS_Systick +Mcu.Pin14=VP_TIM4_VS_ClockSourceINT +Mcu.Pin2=PD1-OSC_OUT +Mcu.Pin3=PA4 +Mcu.Pin4=PA5 +Mcu.Pin5=PA6 +Mcu.Pin6=PA7 +Mcu.Pin7=PB12 +Mcu.Pin8=PB13 +Mcu.Pin9=PB14 +Mcu.PinsNb=15 Mcu.ThirdPartyNb=0 -Mcu.UserConstants=BSP_LCD_SPI,$$_SPI1_IP_HANDLE_$$ +Mcu.UserConstants=BSP_SD_SPI,$$_SPI2_IP_HANDLE_$$;BSP_LCD_SPI,$$_SPI1_IP_HANDLE_$$;APP_FRAME_TIMER,$$_TIM4_IP_HANDLE_$$ Mcu.UserName=STM32F103C8Tx MxCube.Version=6.13.0 MxDb.Version=DB.6.0.130 NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false NVIC.DMA1_Channel3_IRQn=true\:8\:0\:true\:false\:true\:false\:true\:true +NVIC.DMA1_Channel4_IRQn=true\:0\:0\:false\:false\:true\:false\:true\:true +NVIC.DMA1_Channel5_IRQn=true\:0\:0\:false\:false\:true\:false\:true\:true NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false NVIC.ForceEnableDMAVector=true NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false @@ -51,8 +81,10 @@ NVIC.NonMaskableInt_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false NVIC.PendSV_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false NVIC.PriorityGroup=NVIC_PRIORITYGROUP_4 NVIC.SPI1_IRQn=true\:7\:0\:true\:false\:true\:true\:true\:true +NVIC.SPI2_IRQn=true\:0\:0\:false\:false\:true\:true\:true\:true NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false NVIC.SysTick_IRQn=true\:15\:0\:false\:false\:true\:false\:true\:false +NVIC.TIM4_IRQn=true\:0\:0\:false\:false\:true\:true\:true\:true NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false PA13.Locked=true PA13.Mode=Serial_Wire @@ -84,6 +116,33 @@ PA7.GPIO_Label=LCD_DAT PA7.Locked=true PA7.Mode=TX_Only_Simplex_Unidirect_Master PA7.Signal=SPI1_MOSI +PB12.GPIOParameters=GPIO_Speed,PinState,GPIO_Label +PB12.GPIO_Label=SD_CS +PB12.GPIO_Speed=GPIO_SPEED_FREQ_HIGH +PB12.Locked=true +PB12.PinState=GPIO_PIN_SET +PB12.Signal=GPIO_Output +PB13.GPIOParameters=GPIO_Label +PB13.GPIO_Label=SD_SCK +PB13.Locked=true +PB13.Mode=Full_Duplex_Master +PB13.Signal=SPI2_SCK +PB14.GPIOParameters=GPIO_Label +PB14.GPIO_Label=SD_MISO +PB14.Locked=true +PB14.Mode=Full_Duplex_Master +PB14.Signal=SPI2_MISO +PB15.GPIOParameters=GPIO_Label +PB15.GPIO_Label=SD_MOSI +PB15.Locked=true +PB15.Mode=Full_Duplex_Master +PB15.Signal=SPI2_MOSI +PC13-TAMPER-RTC.GPIOParameters=GPIO_Speed,PinState,GPIO_Label +PC13-TAMPER-RTC.GPIO_Label=LED +PC13-TAMPER-RTC.GPIO_Speed=GPIO_SPEED_FREQ_LOW +PC13-TAMPER-RTC.Locked=true +PC13-TAMPER-RTC.PinState=GPIO_PIN_SET +PC13-TAMPER-RTC.Signal=GPIO_Output PD0-OSC_IN.Locked=true PD0-OSC_IN.Mode=HSE-External-Oscillator PD0-OSC_IN.Signal=RCC_OSC_IN @@ -121,7 +180,7 @@ ProjectManager.ToolChainLocation= ProjectManager.UAScriptAfterPath= ProjectManager.UAScriptBeforePath= ProjectManager.UnderRoot=true -ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_DMA_Init-DMA-false-HAL-true,4-MX_SPI1_Init-SPI1-false-HAL-true +ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_DMA_Init-DMA-false-HAL-true,4-MX_SPI1_Init-SPI1-false-HAL-true,5-MX_SPI2_Init-SPI2-false-HAL-true,6-MX_TIM4_Init-TIM4-false-HAL-true RCC.ADCFreqValue=36000000 RCC.AHBFreq_Value=72000000 RCC.APB1CLKDivider=RCC_HCLK_DIV2 @@ -149,7 +208,21 @@ SPI1.Direction=SPI_DIRECTION_2LINES SPI1.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,BaudRatePrescaler SPI1.Mode=SPI_MODE_MASTER SPI1.VirtualType=VM_MASTER +SPI2.BaudRatePrescaler=SPI_BAUDRATEPRESCALER_256 +SPI2.CLKPhase=SPI_PHASE_2EDGE +SPI2.CLKPolarity=SPI_POLARITY_HIGH +SPI2.CalculateBaudRate=140.625 KBits/s +SPI2.Direction=SPI_DIRECTION_2LINES +SPI2.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,BaudRatePrescaler,CLKPolarity,CLKPhase +SPI2.Mode=SPI_MODE_MASTER +SPI2.VirtualType=VM_MASTER +TIM4.IPParameters=Prescaler,Period +TIM4.IPParametersWithoutCheck=Prescaler,Period +TIM4.Period=1000000 / 30 +TIM4.Prescaler=SystemCoreClock / 1000000 - 1 VP_SYS_VS_Systick.Mode=SysTick VP_SYS_VS_Systick.Signal=SYS_VS_Systick +VP_TIM4_VS_ClockSourceINT.Mode=Internal +VP_TIM4_VS_ClockSourceINT.Signal=TIM4_VS_ClockSourceINT board=custom isbadioc=false